19 research outputs found
Recommended from our members
The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations
We describe Global Atmosphere 6.0 and Global Land 6.0: the latest science configurations of the Met Office Unified Model and JULES land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the modelâs physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe Global Atmosphere 6.1 and Global Land 6.1, which include a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global NWP, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (nâ=â143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (nâ=â152), or no hydrocortisone (nâ=â108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (nâ=â137), shock-dependent (nâ=â146), and no (nâ=â101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 nonâcritically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (nâ=â257), ARB (nâ=â248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; nâ=â10), or no RAS inhibitor (control; nâ=â264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ supportâfree days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ supportâfree days among critically ill patients was 10 (â1 to 16) in the ACE inhibitor group (nâ=â231), 8 (â1 to 17) in the ARB group (nâ=â217), and 12 (0 to 17) in the control group (nâ=â231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ supportâfree days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Confronting the Convective Gray Zone in the Global Configuration of the Met Office Unified Model
Abstract In atmospheric models with kilometerâscale grids the resolution approaches the scale of convection. As a consequence the most energetic eddies in the atmosphere are partially resolved and partially unresolved. The modeling challenge to represent convection partially explicitly and partially as a subgrid process is called the convective gray zone problem. The gray zone issue has previously been discussed in the context of regional models, but the evolution in regional models is constrained by the lateral boundary conditions. Here we explore the convective gray zone starting from a defined global configuration of the Met Office Unified Model using initialized forecasts and comparing different model formulations to observations. The focus is on convection and turbulence, but some aspects of the model dynamics are also considered. The global model is run at nominal 5Â km resolution and thus contributions from both resolved and subgrid turbulent and convective fluxes are nonânegligible. The main conclusion is that in the present assessment, the configurations which include scaleâaware turbulence and a carefully reduced and simplified massâflux convection scheme outperform both the configuration with fully parameterized convection as well as a configuration in which the subgrid convection parameterization is switched off completely. The results are more conclusive with regard to convective organization and tropical variability than extratropical predictability. The present study thus endorses the strategy to further develop scaleâaware physics schemes and to pursue an operational implementation of the global 5Â kmâresolution model to be used alongside other ensemble forecasts to allow researchers and forecasters to further assess these simulations
Remote Sensing and Analysis of Tropical Cyclones: Current and Emerging Satellite Sensors
This article describes recent advances in the capability of new satellite sensors for observing Tropical Cyclones (TC) fine structure, wind field, and temporal evolution. The article is based on a World Meteorological Organization (WMO) report prepared for the 10th International Workshop on Tropical Cyclones (IWTC), held in Bali in December 2022, and its objective is to present updates in TC research and operation every four years. Here we focus on updates regarding the most recent space-based TC observations, and we cover new methodologies and techniques using polar orbiting sensors, such as C-band synthetic aperture radars (SARs), L-band and combined C/X-band radiometers, scatterometers, and microwave imagers/sounders. We additionally address progress made with the new generation of geostationary and small satellites, and discuss future sensors planned to be launched in the next years. We then briefly describe some examples on how the newest sensors are used in operations and data assimilation for TC forecasting and research, and conclude the article with a discussion on the remaining challenges of TC space-based observations and possible ways to address them in the near future
Remote Sensing and Analysis of Tropical Cyclones: Current and Emerging Satellite Sensors
International audienceThis article describes recent advances in the capability of new satellite sensors for observing Tropical Cyclones (TC) fine structure, wind field, and temporal evolution. The article is based on a World Meteorological Organization (WMO) report prepared for the 10th International Workshop on Tropical Cyclones (IWTC), held in Bali in December 2022, and its objective is to present updates in TC research and operation every four years. Here we focus on updates regarding the most recent space-based TC observations, and we cover new methodologies and techniques using polar orbiting sensors, such as C-band synthetic aperture radars (SARs), L-band and combined C/X-band radiometers, scatterometers, and microwave imagers/sounders. We additionally address progress made with the new generation of geostationary and small satellites, and discuss future sensors planned to be launched in the next years. We then briefly describe some examples on how the newest sensors are used in operations and data assimilation for TC forecasting and research, and conclude the article with a discussion on the remaining challenges of TC space-based observations and possible ways to address them in the near future