5,488 research outputs found

    The Influence of Magnetic Field Geometry on the Evolution of Black Hole Accretion Flows: Similar Disks, Drastically Different Jets

    Full text link
    Because the magneto-rotational instability is capable of exponentially amplifying weak preexisting magnetic fields, it might be hoped that the character of the magnetic field in accretion disks is independent of the nature of the seed field. However, the divergence-free nature of magnetic fields in highly conducting fluids ensures that their large-scale topology is preserved, no matter how greatly the field intensity is changed. By performing global two-dimensional and three-dimensional general relativistic magnetohydrodynamic disk simulations with several different topologies for the initial magnetic field, we explore the degree to which the character of the flows around black holes depends on the initial topology. We find that while the qualitative properties of the accretion flow are nearly independent of field topology, jet-launching is very sensitive to it: a sense of vertical field consistent for at least an inner disk inflow time is essential to the support of strong jets.Comment: 42 pages; 17 figures; Accepted for publication in ApJ (some new discussion and 2 new figures

    Magnetically Driven Jets in the Kerr Metric

    Full text link
    We compute a series of three-dimensional general relativistic magnetohydrodynamic simulations of accretion flows in the Kerr metric to investigate the properties of the unbound outflows that result. The overall strength of these outflows increases sharply with increasing black hole rotation rate, but a number of generic features are found in all cases. The mass in the outflow is concentrated in a hollow cone whose opening angle is largely determined by the effective potential for matter orbiting with angular momentum comparable to that of the innermost stable circular orbit. The dominant force accelerating the matter outward comes from the pressure of the accretion disk's corona. The principal element that shapes the outflow is therefore the centrifugal barrier preventing accreting matter from coming close to the rotation axis. Inside the centrifugal barrier, the cone contains very little matter and is dominated by electromagnetic fields that rotate at a rate tied closely to the rotation of the black hole. These fields carry an outward-going Poynting flux whose immediate energy source is the rotating spacetime of the Kerr black hole. When the spin parameter a/M of the black hole exceeds ~0.9, the energy carried to infinity by these outflows can be comparable to the nominal radiative efficiency predicted in the Novikov-Thorne model. Similarly, the expelled angular momentum can be comparable to that accreted by the black hole. Both the inner electromagnetic part and the outer matter part can contribute in significant fashion to the energy and angular momentum of the outflow.Comment: 43 pages 12 figures To Appear in the Astrophysical Journal replaced figure 3c with correct imag

    Magnetically Driven Accretion in the Kerr Metric III: Unbound Outflows

    Full text link
    We have carried out fully relativistic numerical simulations of accretion disks in the Kerr metric. In this paper we focus on the unbound outflows that emerge self-consistently from the accretion flow. These outflows are found in the axial funnel region and consist of two components: a hot, fast, tenuous outflow in the axial funnel proper, and a colder, slower, denser jet along the funnel wall. Although a rotating black hole is not required to produce these unbound outflows, their strength is enhanced by black hole spin. The funnel-wall jet is excluded from the axial funnel due to elevated angular momentum, and is also pressure-confined by a magnetized corona. The tenuous funnel outflow accounts for a significant fraction of the energy transported to large distances in the higher-spin simulations. We compare the outflows observed in our simulations with those seen in other simulations.Comment: 33 pages, 8 figures, ApJ submitte

    Mapping the cellular electrophysiology of rat sympathetic preganglionic neurones to their roles in cardiorespiratory reflex integration:A whole cell recording study in situ

    Get PDF
    Sympathetic preganglionic neurones (SPNs) convey sympathetic activity flowing from the CNS to the periphery to reach the target organs. Although previous in vivo and in vitro cell recording studies have explored their electrophysiological characteristics, it has not been possible to relate these characteristics to their roles in cardiorespiratory reflex integration. We used the working heart–brainstem preparation to make whole cell patch clamp recordings from T3–4 SPNs (n = 98). These SPNs were classified by their distinct responses to activation of the peripheral chemoreflex, diving response and arterial baroreflex, allowing the discrimination of muscle vasoconstrictor-like (MVC(like), 39%) from cutaneous vasoconstrictor-like (CVC(like), 28%) SPNs. The MVC(like) SPNs have higher baseline firing frequencies (2.52 ± 0.33 Hz vs. CVC(like) 1.34 ± 0.17 Hz, P = 0.007). The CVC(like) have longer after-hyperpolarisations (314 ± 36 ms vs. MVC(like) 191 ± 13 ms, P < 0.001) and lower input resistance (346 ± 49  MΩ vs. MVC(like) 496 ± 41 MΩ, P < 0.05). MVC(like) firing was respiratory-modulated with peak discharge in the late inspiratory/early expiratory phase and this activity was generated by both a tonic and respiratory-modulated barrage of synaptic events that were blocked by intrathecal kynurenate. In contrast, the activity of CVC(like) SPNs was underpinned by rhythmical membrane potential oscillations suggestive of gap junctional coupling. Thus, we have related the intrinsic electrophysiological properties of two classes of SPNs in situ to their roles in cardiorespiratory reflex integration and have shown that they deploy different cellular mechanisms that are likely to influence how they integrate and shape the distinctive sympathetic outputs

    UV Imaging Polarimetry of the peculiar Seyfert 2 galaxy Mrk 477

    Get PDF
    We present the results of UV imaging polarimetry of the Seyfert 2 galaxy Mrk 477 taken by the Faint Object Camera onboard the Hubble Space Telescope (HST). From a previous HST UV image (lambda ~ 2180A), Mrk 477 has been known to have a pointlike bright UV hotspot in the central region, peculiar among nearby Seyfert 2 galaxies. There are also claims of UV/optical variability, unusual for a Seyfert 2 galaxy. Our data show that there is an off-nuclear scattering region ~ 0."6 (~ 500 pc) NE from the hotspot. The data, after the subtraction of the instrumental effect due to this bright hotspot region, might indicate that the scattered light is also detected in the central 0."2 radius region and is extended to a very wide angle. The hotspot location is consistent with the symmetry center of the PA pattern, which represents the location of the hidden nucleus, but our data do not provide a strong upper limit to the distance between the symmetry center and the hotspot. We have obtained high spatial resolution color map of the continuum which shows that the nuclear spiral arm of 0."4 scale (~ 300pc) is significantly bluer than the off-nuclear mirror and the hotspot region. The nature of the hotspot is briefly discussed.Comment: To appear in Ap

    High-Field Superconductivity at an Electronic Topological Transition in URhGe

    Full text link
    The emergence of superconductivity at high magnetic fields in URhGe is regarded as a paradigm for new state formation approaching a quantum critical point. Until now, a divergence of the quasiparticle mass at the metamagnetic transition was considered essential for superconductivity to survive at magnetic fields above 30 tesla. Here we report the observation of quantum oscillations in URhGe revealing a tiny pocket of heavy quasiparticles that shrinks continuously with increasing magnetic field, and finally disappears at a topological Fermi surface transition close to or at the metamagnetic field. The quasiparticle mass decreases and remains finite, implying that the Fermi velocity vanishes due to the collapse of the Fermi wavevector. This offers a novel explanation for the re-emergence of superconductivity at extreme magnetic fields and makes URhGe the first proven example of a material where magnetic field-tuning of the Fermi surface, rather than quantum criticality alone, governs quantum phase formation.Comment: A revised version has been accepted for publication in Nature Physic

    Quantitative insertion-site sequencing (QIseq) for high throughput phenotyping of transposon mutants

    Get PDF
    Genetic screening using random transposon insertions has been a powerful tool for uncovering biology in prokaryotes, where whole-genome saturating screens have been performed in multiple organisms. In eukaryotes, such screens have proven more problematic, in part because of the lack of a sensitive and robust system for identifying transposon insertion sites. We here describe quantitative insertion-site sequencing, or QIseq, which uses custom library preparation and Illumina sequencing technology and is able to identify insertion sites from both the 5' and 3' ends of the transposon, providing an inbuilt level of validation. The approach was developed using piggyBac mutants in the human malaria parasite Plasmodium falciparum but should be applicable to many other eukaryotic genomes. QIseq proved accurate, confirming known sites in &gt;100 mutants, and sensitive, identifying and monitoring sites over a &gt;10,000-fold dynamic range of sequence counts. Applying QIseq to uncloned parasites shortly after transfections revealed multiple insertions in mixed populations and suggests that &gt;4000 independent mutants could be generated from relatively modest scales of transfection, providing a clear pathway to genome-scale screens in P. falciparum QIseq was also used to monitor the growth of pools of previously cloned mutants and reproducibly differentiated between deleterious and neutral mutations in competitive growth. Among the mutants with fitness defects was a mutant with a piggyBac insertion immediately upstream of the kelch protein K13 gene associated with artemisinin resistance, implying mutants in this gene may have competitive fitness costs. QIseq has the potential to enable the scale-up of piggyBac-mediated genetics across multiple eukaryotic systems

    The thermodynamics of perchlorates. I. Heat capacity of ND4ClO4 from 7 to 345 K and the analysis of heat capacities and related data of NH4ClO4 and ND4ClO4

    Full text link
    The heat capacity of the orthorhombic salt: deuterated ammonium perchlorate, ND4 ClO4 , was measured from 7 to 345 K using adiabatic calorimetry. The heat capacity against temperature curve is smooth, continuous and without anomaly. Values of the standard molar thermodynamic quantities are presented up to 340 K. The heat capacities of ND4 ClO4 and NH4 ClO4 have been analyzed. The contributions to the vibrational heat capacity from the external optical modes of NH+4 or ND+4, ClO−4 and libration from the external modes of ClO−4 along with those of vibration from the internal optical modes of NH+4 or ND+4 and ClO−4, and the acoustic lattice modes for these ions have been calculated. The difference between the experimental and calculated heat capacity, called the residual heat capacity, equals the contribution from ammonium ion rotation and the thermal expansion of the lattice. With recent thermal expansion data, the correction from constant stress to constant strain has been applied and the derived rotational heat capacities of the NH+4 and ND+4 are determined to be in qualitative agreement with those derived from various rotational models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70290/2/JCPSA6-91-1-399-1.pd
    • 

    corecore