310 research outputs found
Calcium Builds Strong Host-Parasite Interactions
Apicomplexan parasite invasion of host cells is a multistep process, requiring coordinated events. In this issue of Cell Host & Microbe, Paul et al. (2015) and Philip and Waters (2015) leverage experimental genetics to show that the calcium-regulated protein phosphatase, calcinuerin, regulates invasion in multiple parasite species
Quantitative insertion-site sequencing (QIseq) for high throughput phenotyping of transposon mutants
Genetic screening using random transposon insertions has been a powerful tool for uncovering biology in prokaryotes, where whole-genome saturating screens have been performed in multiple organisms. In eukaryotes, such screens have proven more problematic, in part because of the lack of a sensitive and robust system for identifying transposon insertion sites. We here describe quantitative insertion-site sequencing, or QIseq, which uses custom library preparation and Illumina sequencing technology and is able to identify insertion sites from both the 5' and 3' ends of the transposon, providing an inbuilt level of validation. The approach was developed using piggyBac mutants in the human malaria parasite Plasmodium falciparum but should be applicable to many other eukaryotic genomes. QIseq proved accurate, confirming known sites in >100 mutants, and sensitive, identifying and monitoring sites over a >10,000-fold dynamic range of sequence counts. Applying QIseq to uncloned parasites shortly after transfections revealed multiple insertions in mixed populations and suggests that >4000 independent mutants could be generated from relatively modest scales of transfection, providing a clear pathway to genome-scale screens in P. falciparum QIseq was also used to monitor the growth of pools of previously cloned mutants and reproducibly differentiated between deleterious and neutral mutations in competitive growth. Among the mutants with fitness defects was a mutant with a piggyBac insertion immediately upstream of the kelch protein K13 gene associated with artemisinin resistance, implying mutants in this gene may have competitive fitness costs. QIseq has the potential to enable the scale-up of piggyBac-mediated genetics across multiple eukaryotic systems
20 years of BioMalPar: building a collaborative malaria research network
In 2004 the first annual BioMalPar meeting was held at EMBL Heidelberg, bringing together researchers from around the world with the goal of building connections between malaria research groups in Europe. Twenty years on it is time to reflect on what was achieved and to look ahead to the future
Recommended from our members
Frequent expansion of Plasmodium vivax Duffy Binding Protein in Ethiopia and its epidemiological significance.
Plasmodium vivax invasion of human erythrocytes depends on the Duffy Binding Protein (PvDBP) which interacts with the Duffy antigen. PvDBP copy number has been recently shown to vary between P. vivax isolates in Sub-Saharan Africa. However, the extent of PvDBP copy number variation, the type of PvDBP multiplications, as well as its significance across broad samples are still unclear. We determined the prevalence and type of PvDBP duplications, as well as PvDBP copy number variation among 178 Ethiopian P. vivax isolates using a PCR-based diagnostic method, a novel quantitative real-time PCR assay and whole genome sequencing. For the 145 symptomatic samples, PvDBP duplications were detected in 95 isolates, of which 81 had the Cambodian and 14 Malagasy-type PvDBP duplications. PvDBP varied from 1 to >4 copies. Isolates with multiple PvDBP copies were found to be higher in symptomatic than asymptomatic infections. For the 33 asymptomatic samples, PvDBP was detected with two copies in two of the isolates, and both were the Cambodian-type PvDBP duplication. PvDBP copy number in Duffy-negative heterozygotes was not significantly different from that in Duffy-positives, providing no support for the hypothesis that increased copy number is a specific association with Duffy-negativity, although the number of Duffy-negatives was small and further sampling is required to test this association thoroughly
Extreme mutation bias and high AT content in Plasmodium falciparum.
For reasons that remain unknown, the Plasmodium falciparum genome has an exceptionally high AT content compared to other Plasmodium species and eukaryotes in general - nearly 80% in coding regions and approaching 90% in non-coding regions. Here, we examine how this phenomenon relates to genome-wide patterns of de novo mutation. Mutation accumulation experiments were performed by sequential cloning of six P. falciparum isolates growing in human erythrocytes in vitro for 4 years, with 279 clones sampled for whole genome sequencing at different time points. Genome sequence analysis of these samples revealed a significant excess of G:C to A:T transitions compared to other types of nucleotide substitution, which would naturally cause AT content to equilibrate close to the level seen across the P. falciparum reference genome (80.6% AT). These data also uncover an extremely high rate of small indel mutation relative to other species, primarily associated with repetitive AT-rich sequences, in addition to larger-scale structural rearrangements focused in antigen-coding var genes. In conclusion, high AT content in P. falciparum is driven by a systematic mutational bias and ultimately leads to an unusual level of microstructural plasticity, raising the question of whether this contributes to adaptive evolution
Relation between the Dantu blood group variant and bacteremia in Kenyan children: a population-based case-control study
Background: The Dantu blood group variant protects against Plasmodium falciparum infections, but its wider consequences have not been previously explored. Here, we investigate the impact of Dantu on susceptibility to bacteremia.
Methods: We conducted a case-control study in children presenting with community-acquired bacteremia to Kilifi County Hospital in Kenya between 1998 and 2010. We used logistic regression to test for associations between the Dantu marker single-nucleotide polymorphism rs186873296 A > G and both all-cause and pathogen-specific bacteremia under an additive model. We used date of admission as a proxy measure of malaria transmission intensity, given known differences in malaria prevalence over the course of the study.
Results: Dantu was associated with protection from all-cause bacteremia (OR, 0.81; P = .014), the association being greatest in homozygotes (OR, 0.30; P = .013). This protection was shared across the major bacterial pathogens but, notably, was only significant during the era of high malaria transmission pre-2003 (OR, 0.79; P = .023).
Conclusions: Consistent with previous studies showing the indirect impact on bacteremia risk of other malaria-associated red cell variants, our study also shows that Dantu is protective against bacteremia via its effect on malaria risk. Dantu does not appear to be under balancing selection through an increased risk of bacterial infections
A stem cell strategy identifies glycophorin C as a major erythrocyte receptor for the rodent malaria parasite Plasmodium berghei
The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many receptors remain unknown. Host-parasite interactions evolve rapidly and are therefore likely to be species-specific. As a results, understanding of invasion receptors outside the major human pathogen Plasmodium falciparum is very limited. Here we use mouse embryonic stem cells (mESCs) that can be genetically engineered and differentiated into erythrocytes to identify receptors for the rodent malaria parasite Plasmodium berghei. Two proteins previously implicated in human malaria infection: glycophorin C (GYPC) and Band-3 (Slc4a1) were deleted in mESCs to generate stable cell lines, which were differentiated towards erythropoiesis. In vitro infection assays revealed that while deletion of Band-3 has no effect, absence of GYPC results in a dramatic decrease in invasion, demonstrating the crucial role of this protein for P. berghei infection. This stem cell approach offers the possibility of targeting genes that may be essential and therefore difficult to disrupt in whole organisms and has the potential to be applied to a variety of parasites in diverse host cell types
- …