10 research outputs found
Uptake and depuration of cyanotoxins in the common blue mussel Mytilus edulis.
Cyanobacteria produce a variety of secondary metabolites that possess - amongst other things - antifungal, antibacterial and antiviral properties. Being primary producers, they are also a vital component within the food web. However, certain strains also produce toxic metabolites such as the hepatotoxins microcystin (MC) and nodularin (NOD). Their toxicity - in combination with the increasing global occurrence - has resulted in a drinking water guideline limit of 1 μg L-1 being issued by the World Health Organisation (WHO). However, these toxins are not only present in water, but can be accumulated by fish and shellfish. Currently, no regulations regarding cyanotoxin-contaminated seafood have been established, despite similar toxicity to routinely-monitored marine toxins such as domoic acid (DA). To facilitate regular monitoring, a high-performance liquid chromatography photo diode array (HPLC-PDA) analysis method for the detection of DA was optimised to enable the simultaneous detection of DA and nine cyanotoxins. This method was then utilised to determine cyanotoxin concentration in laboratory cyanobacteria strains. To assess the accumulation and depuration of cyanotoxins in the common blue mussel Mytilus edulis, three feeding trials were performed. During these, mussels were exposed to two cyanobacteria strains - Nodularia spumigena KAC66 and Microcystis aeruginosa PCC 7813 - both individually and simultaneously. A rapid dose-dependent accumulation of cyanotoxins was observed with maximum concentration of 3.4 -17 μg g-1 ww accumulated by M. edulis, which was followed by a much slower depuration. During the final feeding trial with the two cyanobacteria strains, cyanotoxins were still detectable following twenty-seven days of depuration. Mortality in all studies was 7% or less, indicating that most mussels were unaffected by the maximum dose of 480 μg L-1 NOD (feeding study 1), 390 μg L-1 MC (feeding study 2), or 130 μg L-1 total cyanotoxins (feeding trial 3). Mortality in negative control tanks was lower throughout all three feeding trials ( < 1 - 2.6%). Consumption of a typical portion size (twentty mussels) would result in ingestion of cyanotoxins at levels significantly higher than the WHO recommended tolerable daily intake (TDI) of 2.4 μg NOD and/or MCs for a 60 kg adult. This value was exceeded not only during the exposure period (maximum levels 270 - 1370 μg cyanotoxins per twenty mussels), but also at the end of the depuration period 39-600 μg cyanotoxins per twenty mussels. These results illustrated that cyanotoxin monitoring of seafood should be considered not only during, but also following bloom events. In an attempt to investigate the cyanotoxin budget of the experimental system, not only mussels but also cyanobacteria cultures, the tank water and the mussel faeces were also analysed for their cyanotoxin content. Results showed that large quantities of MCs and NOD were unaccounted for during all exposure trials. The combined effect of cyanotoxin metabolism in M. edulis, biotic and/or abiotic degradation, protein binding, and losses during the extraction and analysis were thought to have contributed to the unaccounted cyanotoxin fraction. Mussel flesh was analysed for the presence of glutathione or cysteine conjugates; however, there was no evidence of their occurrence in the samples tested. Due to these discrepancies in the toxin budget of the system, the introduction of correction factors for the analysis of cyanotoxins in M. edulis was suggested in order to protect the general public
Development and single-laboratory validation of a UHPLC-MS/MS method for quantitation of microcystins and nodularin in natural water, cyanobacteria, shellfish and algal supplement tablet powders.
A simple, rapid UHPLC-MS/MS method has been developed and optimised for the quantitation of microcystins and nodularin in wide variety of sample matrices. Microcystin analogues targeted were MC-LR, MC-RR, MC-LA, MC-LY, MC-LF, LC-LW, MC-YR, MC-WR, [Asp3] MC-LR, [Dha7] MC-LR, MC-HilR and MC-HtyR. Optimisation studies were conducted to develop a simple, quick and efficient extraction protocol without the need for complex pre-analysis concentration procedures, together with a rapid sub 5 min chromatographic separation of toxins in shellfish and algal supplement tablet powders, as well as water and cyanobacterial bloom samples. Validation studies were undertaken on each matrix-analyte combination to the full method performance characteristics following international guidelines. The method was found to be specific and linear over the full calibration range. Method sensitivity in terms of limits of detection, quantitation and reporting were found to be significantly improved in comparison to LC-UV methods and applicable to the analysis of each of the four matrices. Overall, acceptable recoveries were determined for each of the matrices studied, with associated precision and within-laboratory reproducibility well within expected guidance limits. Results from the formalised ruggedness analysis of all available cyanotoxins, showed that the method was robust for all parameters investigated. The results presented here show that the optimised LC-MS/MS method for cyanotoxins is fit for the purpose of detection and quantitation of a range of microcystins and nodularin in shellfish, algal supplement tablet powder, water and cyanobacteria. The method provides a valuable early warning tool for the rapid, routine extraction and analysis of natural waters, cyanobacterial blooms, algal powders, food supplements and shellfish tissues, enabling monitoring labs to supplement traditional microscopy techniques and report toxicity results within a short timeframe of sample receipt. The new method, now accredited to ISO17025 standard, is simple, quick, applicable to multiple matrices and is highly suitable for use as a routine, high-throughout, fast turnaround regulatory monitoring tool
A feasibility study into the production of a mussel matrix reference material for the cyanobacterial toxins microcystins and nodularins.
Microcystins and nodularins, produced naturally by certain species of cyanobacteria, have been found to accumulate in aquatic foodstuffs such as fish and shellfish, resulting in a risk to the health of the seafood consumer. Monitoring of toxins in such organisms for risk management purposes requires the availability of certified matrix reference materials to aid method development, validation and routine quality assurance. This study consequently targeted the preparation of a mussel tissue reference material incurred with a range of microcystin analogues and nodularins. Nine targeted analogues were incorporated into the material as confirmed through liquid chromatography with tandem mass spectrometry (LC-MS/MS), with an additional 15 analogues detected using LC coupled to non-targeted high resolution mass spectrometry (LC-HRMS). Toxins in the reference material and additional source tissues were quantified using LC-MS/MS, two different enzyme-linked immunosorbent assay (ELISA) methods and with an oxidative-cleavage method quantifying 3-methoxy-2-methyl-4-phenylbutyric acid (MMPB). Correlations between the concentrations quantified using the different methods were variable, likely relating to differences in assay cross-reactivities and differences in the abilities of each method to detect bound toxins. A consensus concentration of total soluble toxins determined from the four independent test methods was 2425 ± 575 µg/kg wet weight. A mean 43 ± 9% of bound toxins were present in addition to the freely extractable soluble form (57 ± 9%). The reference material produced was homogenous and stable when stored in the freezer for six months without any post-production stabilization applied. Consequently, a cyanotoxin shellfish reference material has been produced which demonstrates the feasibility of developing certified seafood matrix reference materials for a large range of cyanotoxins and could provide a valuable future resource for cyanotoxin risk monitoring, management and mitigation
Application of Focal Conflict Theory to Psychoeducational Groups: Implications for Process, Content, and Leadership
Group psychoeducation is a common group type used for a range of purposes. The literature presents balancing content and process as a challenge for psychoeducational group leaders. While the significance of group psychoeducation is supported, practitioners are given little direction for addressing process in these groups. Focal Conflict Theory (FCT) is a model for conceptualizing and intervening in group process that has been applied to therapy and work groups. This article presents the challenges of psychoeducational groups, describes FCT, and discusses its application to psychoeducational groups using case examples. Implications for leaders of psychoeducation groups are discussed
Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials
There has been a large increase in the number of papers published that are relevant to this review over this review period. The growth in popularity of LIBS is rapid, with applications being published for most sample types. This is undoubtedly because of its capability to analyse in situ on a production line (hence saving time and money) and its minimally destructive nature meaning that both forensic and cultural heritage samples may be analysed. It also has a standoff analysis capability meaning that hazardous materials, e.g. explosives or nuclear materials, may be analysed from a safe distance. The use of mathematical algorithms in conjunction with LIBS to enable improved accuracy has proved a popular area of research. This is especially true for ferrous and non-ferrous samples. Similarly, chemometric techniques have been used with LIBS to aid in the sorting of polymers and other materials. An increase in the number of papers in the subject area of alternative fuels was noted. This was at the expense of papers describing methods for the analysis of crude oils. For nanomaterials, previous years have seen a huge number of single particle and field flow fractionation characterisations. Although several such papers are still being published, the focus seems to be switching to applications of the nanoparticles and the mechanistic aspects of how they retain or bind with other analytes. This is the latest review covering the topic of advances in the analysis of metals, chemicals and materials. It follows on from last year's review1-6 and is part of the Atomic Spectrometry Updates series
Rapid uptake and slow depuration: Health risks following cyanotoxin accumulation in mussels?
Freshwater cyanobacteria produce highly toxic secondary metabolites, which can be transported downstream by rivers and waterways into the sea. Estuarine and coastal aquaculture sites exposed to toxic cyanobacteria raise concerns that shellfish may accumulate and transfer cyanotoxins in the food web. This study aims to describe the competitive pattern of uptake and depuration of a wide range of microcystins (MC-LR, MC-LF, MC-LW, MC-LY, [Asp3]-MC-LR/[Dha7]-MC-LR, MC-HilR) and nodularins (NOD cyclic and linear) within the common blue mussel Mytilus edulis exposed to a combined culture of Microcystis aeruginosa and Nodularia spumigena into the coastal environment.
Different distribution profiles of MCs/NODs in the experimental system were observed. The majority of MCs/NODs were present intracellularly which is representative of healthy cyanobacterial cultures, with MC-LR and NOD the most abundant analogues. Higher removal rate was observed for NOD (≈96%) compared to MCs (≈50%) from the water phase. Accumulation of toxins in M. edulis was fast, reaching up to 3.4 μg/g shellfish tissue four days after the end of the 3-days exposure period, with NOD (1.72 μg/g) and MC-LR (0.74 μg/g) as the dominant toxins, followed by MC-LF (0.35 μg/g) and MC-LW (0.31 μg/g). Following the end of the exposure period depuration was incomplete after 27 days (0.49 μg/g of MCs/NODs). MCs/NODs were also present in faecal material and extrapallial fluid after 24 h of exposure with MCs the main contributors to the total cyanotoxin load in faecal material and NOD in the extrapallial fluid. Maximum concentration of MCs/NODs accumulated in a typical portion of mussels (20 mussels, ≈4 g each) was beyond greater the acute, seasonal and lifetime tolerable daily intake. Even after 27 days of depuration, consuming mussels harvested during even short term harmful algae blooms in close proximity to shellfish beds might carry a high health risk, highlighting the need for testing
Rapid uptake and slow depuration: health risks following cyanotoxin accumulation in mussels?
Freshwater cyanobacteria produce highly toxic secondary metabolites, which can be transported downstream by rivers and waterways into the sea. Estuarine and coastal aquaculture sites exposed to toxic cyanobacteria raise concerns that shellfish may accumulate and transfer cyanotoxins in the food web. This study aims to describe the competitive pattern of uptake and depuration of a wide range of microcystins (MC-LR, MC-LF, MC-LW, MC-LY, [Asp3]-MC-LR/[Dha7]-MC-LR, MC-HilR) and nodularins (NOD cyclic and linear) within the common blue mussel Mytilus edulis exposed to a combined culture of Microcystis aeruginosa and Nodularia spumigena into the coastal environment. Different distribution profiles of MCs/NODs in the experimental system were observed. The majority of MCs/NODs were present intracellularly which is representative of healthy cyanobacterial cultures, with MC-LR and NOD the most abundant analogues. Higher removal rate was observed for NOD (≈96%) compared to MCs (≈50%) from the water phase. Accumulation of toxins in M. edulis was fast, reaching up to 3.4 μg/g shellfish tissue four days after the end of the 3-days exposure period, with NOD (1.72 μg/g) and MC-LR (0.74 μg/g) as the dominant toxins, followed by MC-LF (0.35 μg/g) and MC-LW (0.31 μg/g). Following the end of the exposure period depuration was incomplete after 27 days (0.49 μg/g of MCs/NODs). MCs/NODs were also present in faecal material and extrapallial fluid after 24 h of exposure with MCs the main contributors to the total cyanotoxin load in faecal material and NOD in the extrapallial fluid. Maximum concentration of MCs/NODs accumulated in a typical portion of mussels (20 mussels, ≈4 g each) was beyond greater the acute, seasonal and lifetime tolerable daily intake. Even after 27 days of depuration, consuming mussels harvested during even short term harmful algae blooms in close proximity to shellfish beds might carry a high health risk, highlighting the need for testing
Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats
The host response against foreign materials designates the biocompatibility of intravenously administered microcapsules and thus, widely affects their potential for subsequent clinical use as artificial oxygen/drug carriers. Therefore, body distribution and systemic parameters, as well as markers of inflammation and indicators of organ damage were carefully evaluated after administration of short-chained poly (vinyl alcohol, (PVA)) solution or poly (ethylene glycol (PEG))-shielded perfluorodecalin-filled poly (d,l-lactide-co-glycolide, PFD-filled PLGA) microcapsules into Wistar rats. Whereas PVA infusion was well tolerated, all animals survived the selected dose of 1247 mg microcapsules/kg body weight but showed marked toxicity (increased enzyme activities, rising pro-inflammatory cytokines and complement factors) and developed a mild metabolic acidosis. The observed hypotension emerging immediately after start of capsule infusion was transient and mean arterial blood pressure restored to baseline within 70 min. Microcapsules accumulated in spleen and liver (but not in other organs) and partly occluded hepatic microcirculation reducing sinusoidal perfusion rate by about 20%.
Intravenous infusion of high amounts of PFD-filled PLGA microcapsules was tolerated temporarily but associated with severe side effects such as hypotension and organ damage. Short-chained PVA displays excellent biocompatibility and thus, can be utilized as emulsifier for the preparation of drug carriers designed for intravenous use