214 research outputs found

    Self-referrals to a doctors’ mental health service over 10 years

    Get PDF
    Background: The adverse impact on doctors’ health of constant organizational change in healthcare is well established. Aims: To investigate the change in self-referral rates to a doctors’ mental health service, and associated morbidity over a decade. Methods: All doctors attending a doctors’ mental health service between 1 January 2002 and 31 December 2011 were asked to complete the Clinical Outcomes in Routine Evaluation questionnaire and Maslach burnout inventory as part of routine assessment before treatment. Univariate analysis of variance was used to test for statistically significant differences between severity scores in different years. Results: Between 1 January 2002 and 31 December 2011, 1062 doctors attended the service; 852 (80%) completed both questionnaires and 64 (6%) completed one of them. The overall response rate was 86% (916/1062). Referrals increased >4-fold, from 44 in 2002 to 185 in 2011. Sixty-one per cent scored above the threshold for psychological distress and 59% for burnout. There were no significant changes in morbidity over time. Conclusions: Increasing numbers of doctors sought help from the doctors’ mental health support service. More than half scored above the thresholds for burnout and psychological distress and these proportions were consistent over 10 years. Doctors may be more willing to seek help than a decade ago. Further research is needed to confirm the underlying reasons for this. More resource is needed to meet the increase in demand

    Exercise-based multimodal programming : A treatment gap for older adults with advanced cancer [Commentary]

    Get PDF
    [Extract] Approximately 60% of new cancer diagnoses occur in patients aged 65 years and older.1 Normal aging is associated with a decline in health and physical function.2 A cancer diagnosis and subsequent treatment can accelerate this age-related physical decline, increasing the risk of adverse health events and mortality.1 Aerobic and resistance exercise is an effective therapy to improve physical fitness and quality of life and to reduce cancer-related fatigue in individuals diagnosed with cancer, including advanced cancer.3 The American College of Sports Medicine guidelines recommend maintenance of physical activity during active cancer treatment,3 but guidelines specific to advanced cancer or elderly populations are lacking. Older patients with cancer are vastly underrepresented in clinical trials, including exercise-based trials,4 due in part to the challenges introduced by the observed heterogeneity among older adults with respect to comorbid conditions, functional status, motivation, and safety-related concerns of the treating health care professionals.4 Older adults are more likely to fear physical activity due to potential injury and to lack of guidance regarding how to start exercising.5,

    The SAMI Galaxy Survey: Revising the Fraction of Slow Rotators in IFS Galaxy Surveys

    Get PDF
    The fraction of galaxies supported by internal rotation compared to galaxies stabilized by internal pressure provides a strong constraint on galaxy formation models. In integral field spectroscopy surveys, this fraction is biased because survey instruments typically only trace the inner parts of the most massive galaxies. We present aperture corrections for the two most widely used stellar kinematic quantities V/σV/\sigma and λR\lambda_{R}. Our demonstration involves integral field data from the SAMI Galaxy Survey and the ATLAS3D^{\rm{3D}} Survey. We find a tight relation for both V/σV/\sigma and λR\lambda_{R} when measured in different apertures that can be used as a linear transformation as a function of radius, i.e., a first-order aperture correction. We find that V/σV/\sigma and λR\lambda_{R} radial growth curves are well approximated by second order polynomials. By only fitting the inner profile (0.5ReR_{\rm{e}}), we successfully recover the profile out to one ReR_{\rm{e}} if a constraint between the linear and quadratic parameter in the fit is applied. However, the aperture corrections for V/σV/\sigma and λR\lambda_{R} derived by extrapolating the profiles perform as well as applying a first-order correction. With our aperture-corrected λR\lambda_{R} measurements, we find that the fraction of slow rotating galaxies increases with stellar mass. For galaxies with logM/M>\log M_{*}/M_{\odot}> 11, the fraction of slow rotators is 35.9±4.335.9\pm4.3 percent, but is underestimated if galaxies without coverage beyond one ReR_{\rm{e}} are not included in the sample (24.2±5.324.2\pm5.3 percent). With measurements out to the largest aperture radius the slow rotator fraction is similar as compared to using aperture corrected values (38.3±4.438.3\pm4.4 percent). Thus, aperture effects can significantly bias stellar kinematic IFS studies, but this bias can now be removed with the method outlined here.Comment: Accepted for Publication in the Monthly Notices of the Royal Astronomical Society. 16 pages and 11 figures. The key figures of the paper are: 1, 4, 9, and 1

    The SAMI Galaxy Survey: energy sources of the turbulent velocity dispersion in spatially-resolved local star-forming galaxies

    Get PDF
    We investigate the energy sources of random turbulent motions of ionised gas from Hα\alpha emission in eight local star-forming galaxies from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. These galaxies satisfy strict pure star-forming selection criteria to avoid contamination from active galactic nuclei (AGN) or strong shocks/outflows. Using the relatively high spatial and spectral resolution of SAMI, we find that -- on sub-kpc scales our galaxies display a flat distribution of ionised gas velocity dispersion as a function of star formation rate (SFR) surface density. A major fraction of our SAMI galaxies shows higher velocity dispersion than predictions by feedback-driven models, especially at the low SFR surface density end. Our results suggest that additional sources beyond star formation feedback contribute to driving random motions of the interstellar medium (ISM) in star-forming galaxies. We speculate that gravity, galactic shear, and/or magnetorotational instability (MRI) may be additional driving sources of turbulence in these galaxies.Comment: 11 pages, 5 figures, 3 tables. Accepted by MNRA

    The SAMI Galaxy Survey: mass-kinematics scaling relations

    Get PDF
    We use data from the Sydney-AAO Multi-object Integral-field spectroscopy (SAMI) Galaxy Survey to study the dynamical scaling relation between galaxy stellar mass MM_* and the general kinematic parameter SK=KVrot2+σ2S_K = \sqrt{K V_{rot}^2 + \sigma^2} that combines rotation velocity VrotV_{rot} and velocity dispersion σ\sigma. We show that the logMlogSK\log M_* - \log S_K relation: (1)~is linear above limits set by properties of the samples and observations; (2)~has slightly different slope when derived from stellar or gas kinematic measurements; (3)~applies to both early-type and late-type galaxies and has smaller scatter than either the Tully-Fisher relation (logMlogVrot\log M_* - \log V_{rot}) for late types or the Faber-Jackson relation (logMlogσ\log M_* - \log\sigma) for early types; and (4)~has scatter that is only weakly sensitive to the value of KK, with minimum scatter for KK in the range 0.4 and 0.7. We compare SKS_K to the aperture second moment (the `aperture velocity dispersion') measured from the integrated spectrum within a 3-arcsecond radius aperture (σ3\sigma_{3^{\prime\prime}}). We find that while SKS_{K} and σ3\sigma_{3^{\prime\prime}} are in general tightly correlated, the logMlogSK\log M_* - \log S_K relation has less scatter than the logMlogσ3\log M_* - \log \sigma_{3^{\prime\prime}} relation.Comment: 14 pages, 8 figures, Accepted 2019 May 22. Received 2019 May 18; in original form 2019 January

    The SAMI Galaxy Survey: gravitational potential and surface density drive stellar populations -- I. early-type galaxies

    Get PDF
    The well-established correlations between the mass of a galaxy and the properties of its stars are considered evidence for mass driving the evolution of the stellar population. However, for early-type galaxies (ETGs), we find that gig-i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ\Phi than with mass MM, whereas stellar population age correlates best with surface density Σ\Sigma. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the SAMI Galaxy Survey, compared to correlations with mass, the color--Φ\Phi, [Z/H]--Φ\Phi, and age--Σ\Sigma relations show both smaller scatter and less residual trend with galaxy size. For the star formation duration proxy [α\alpha/Fe], we find comparable results for trends with Φ\Phi and Σ\Sigma, with both being significantly stronger than the [α\alpha/Fe]-MM relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color--Φ\Phi diagram is a more precise tool for determining the developmental stage of the stellar population than the conventional color--mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α\alpha/Fe] relations with Σ\Sigma: (a) the age--Σ\Sigma and [α\alpha/Fe]--Σ\Sigma correlations arise as results of compactness driven quenching mechanisms; and/or (b) as fossil records of the ΣSFRΣgas\Sigma_{SFR}\propto\Sigma_{gas} relation in their disk-dominated progenitors.Comment: 9 pages, 4 figures, 1 table Accepted to Ap
    corecore