3 research outputs found

    Comparative analysis of the intestinal microbiota in patients with exocrine pancreatic insufficiency of various severity

    Get PDF
    Background. Exocrine pancreatic insufficiency (EPI) is a critical host factor in determining the composition of the gut microbiota. Diseases that cause exocrine insufficiency can affect the gut microbiome, which can potentiate disease progression and complications. To date, the relationship of exocrine insufficiency in various pancreatic (PA) pathologies, in chronic pancreatitis (CP), with dysbiotic changes in the intestinal microbiota (IM) has not been reliably studied. The available data are heterogeneous and contradictory, which determines the need for further research. Aim. To conduct a comparative analysis of the taxonomic composition of the intestinal microbiota in patients with CP of various etiologies, without or with the presence of EPI of varying severity, as well as patients with severe EPI with a history of surgical intervention (SI) on the pancreas. Materials and methods. A total of 85 patients were included in the study. Patients were divided into groups according to the severity of EPI: Group 1 (n=16) patients with CP without EPI; Group 2 (n=11) patients with CP and mild EPI; Group 3 (n=17) patients with severe CP and EPI; Group 4 (n=41) severe EPI in persons with a history of SI on the pancreas. Verification of CP was carried out according to clinical, anamnestic and instrumental data. The degree of EPI was determined by the level of pancreatic elastase-1 (PE-1) feces. Informed consent for the study was obtained for each patient, an anamnesis was collected, physical and laboratory examinations were performed, and a stool sample was obtained. DNA was extracted from each stool sample, the taxonomic composition of BM was determined by sequencing the bacterial 16S rRNA genes, followed by bioinformatic analysis. Results. We followed the changes in the gut microbiota from a group of patients with CP without EPI to a group with severe EPI, in those who underwent SI. At the level of the phylum, the IM of all groups showed the dominance of Firmicutes, with the lowest representation in the severe EPI group, both with SI and CP, and the growth of the Actinobacteria, Verrucomicrobiota and Fusobacteria types. The differential representation of childbirth varied: in patients with severe EPI and CP, compared with mild, statistically significant genera Akkermansia, Ruminococcus gauvreauii group and Holdemanella; compared with CP without exocrine insufficiency, Prevotella, Ruminococcus gauvreauii group, Peptostreptococcus and Blautia dominated. The CP group with mild EPI was dominated by the following genera: Lachnospiraceae_ND 2004 group, Faecalitalea, Fusobacterium, Catenibacterium, Roseburia, Atopobium, Cloacibacillus, Clostridium innococum group, Ruminococcus torques group. All groups showed a low diversity of taxa with a predominance of opportunistic flora, including participants in oncogenesis. Conclusion. The results of the study show that patients with CP of various etiologies and patients with severe EPI who underwent specific intervention on the pancreas have intestinal microbiota dysbiosis, the severity of which is significantly influenced by the degree of EPI

    Study of the resistome of human microbial communities using a targeted panel of antibiotic resistance genes in COVID-19 patients

    Get PDF
    Aim. To study overall drug resistance genes (resistome) in the human gut microbiome and the changes in these genes during COVID-19 in-hospital therapy. Materials and methods. A single-center retrospective cohort study was conducted. Only cases with laboratory-confirmed SARS-CoV-2 RNA using polymerase chain reaction in oro-/nasopharyngeal swab samples were subject to analysis. The patients with a documented history of or current comorbidities of the hepatobiliary system, malignant neoplasms of any localization, systemic and autoimmune diseases, as well as pregnant women were excluded. Feces were collected from all study subjects for subsequent metagenomic sequencing. The final cohort was divided into two groups depending on the disease severity: mild (group 1) and severe (group 2). Within group 2, five subgroups were formed, depending on the use of antibacterial drugs (ABD): group 2A (receiving ABD), group 2AC (receiving ABD before hospitalization), group 2AD (receiving ABD during hospitalization), group 2AE (receiving ABD during and before hospitalization), group 2B (not receiving ABD). Results. The median number of antibiotic resistance (ABR) genes (cumulative at all time points) was significantly higher in the group of patients treated with ABD: 81.0 (95% CI 73.8–84.5) vs. 51.0 (95% CI 31.1–68.4). In the group of patients treated with ABD (2A), the average number of multidrug resistance genes (efflux systems) was significantly higher than in controls (group 2B): 47.0 (95% CI 46.0–51.2) vs. 21.5 (95% CI 7.0–43.9). Patients with severe coronavirus infection tended to have a higher median number of ABR genes but without statistical significance. Patients in the severe COVID-19 group who did not receive ABD before and during hospitalization also had more resistance genes than the patients in the comparison group. Conclusion. This study demonstrated that fewer ABR genes were identified in the group with a milder disease than in the group with a more severe disease associated with more ABR genes, with the following five being the most common: SULI, MSRC, ACRE, EFMA, SAT

    Microbial Signatures in COVID-19: Distinguishing Mild and Severe Disease via Gut Microbiota

    No full text
    The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted global healthcare, underscoring the importance of exploring the virus’s effects on infected individuals beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the gut, thereby altering the gut microbiota. This study aimed to analyze the gut microbiota composition differences between COVID-19 patients experiencing mild and severe symptoms. We conducted 16S rRNA metagenomic sequencing on fecal samples from 49 mild and 43 severe COVID-19 cases upon hospital admission. Our analysis identified a differential abundance of specific bacterial species associated with the severity of the disease. Severely affected patients showed an association with Enterococcus faecium, Akkermansia muciniphila, and others, while milder cases were linked to Faecalibacterium prausnitzii, Alistipes putredinis, Blautia faecis, and additional species. Furthermore, a network analysis using SPIEC-EASI indicated keystone taxa and highlighted structural differences in bacterial connectivity, with a notable disruption in the severe group. Our study highlights the diverse impacts of SARS-CoV-2 on the gut microbiome among both mild and severe COVID-19 patients, showcasing a spectrum of microbial responses to the virus. Importantly, these findings align, to some extent, with observations from other studies on COVID-19 gut microbiomes, despite variations in methodologies. The findings from this study, based on retrospective data, establish a foundation for future prospective research to confirm the role of the gut microbiome as a predictive biomarker for the severity of COVID-19
    corecore