1,172,787 research outputs found

    Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps

    Full text link
    We give three families of parabolic rational maps and show that every Cantor set of circles as the Julia set of a non-hyperbolic rational map must be quasisymmetrically equivalent to the Julia set of one map in these families for suitable parameters. Combining a result obtained before, we give a complete classification of the Cantor circles Julia sets in the sense of quasisymmetric equivalence. Moreover, we study the regularity of the components of the Cantor circles Julia sets and establish a sufficient and necessary condition when a component of a Cantor circles Julia set is a quasicircle.Comment: 39 pages, 10 figures and 1 table, to appear in Discrete and Continous Dynamical Systems-

    Foundations for an iteration theory of entire quasiregular maps

    Full text link
    The Fatou-Julia iteration theory of rational functions has been extended to quasiregular mappings in higher dimension by various authors. The purpose of this paper is an analogous extension of the iteration theory of transcendental entire functions. Here the Julia set is defined as the set of all points such that complement of the forward orbit of any neighbourhood has capacity zero. It is shown that for maps which are not of polynomial type the Julia set is non-empty and has many properties of the classical Julia set of transcendental entire functions.Comment: 31 page
    corecore