58 research outputs found

    Program Derivation by Correctness Enhacements

    Full text link
    Relative correctness is the property of a program to be more-correct than another program with respect to a given specification. Among the many properties of relative correctness, that which we found most intriguing is the property that program P' refines program P if and only if P' is more-correct than P with respect to any specification. This inspires us to reconsider program derivation by successive refinements: each step of this process mandates that we transform a program P into a program P' that refines P, i.e. P' is more-correct than P with respect to any specification. This raises the question: why should we want to make P' more-correct than P with respect to any specification, when we only have to satisfy specification R? In this paper, we discuss a process of program derivation that replaces traditional sequence of refinement-based correctness-preserving transformations starting from specification R by a sequence of relative correctness-based correctness-enhancing transformations starting from abort.Comment: In Proceedings Refine'15, arXiv:1606.0134

    Modal Kleene algebra and applications - a survey

    Get PDF
    Modal Kleene algebras are Kleene algebras with forward and backward modal operators defined via domain and codomain operations. They provide a concise and convenient algebraic framework that subsumes various other calculi and allows treating quite a variety of areas. We survey the basic theory and some prominent applications. These include, on the system semantics side, Hoare logic and PDL (Propositional Dynamic Logic), wp calculus and predicate transformer semantics, temporal logics and termination analysis of rewrite and state transition systems. On the derivation side we apply the framework to game analysis and greedy-like algorithms

    Algebraic Notions of Termination

    Full text link
    Five algebraic notions of termination are formalised, analysed and compared: wellfoundedness or Noetherity, L\"ob's formula, absence of infinite iteration, absence of divergence and normalisation. The study is based on modal semirings, which are additively idempotent semirings with forward and backward modal operators. To model infinite behaviours, idempotent semirings are extended to divergence semirings, divergence Kleene algebras and omega algebras. The resulting notions and techniques are used in calculational proofs of classical theorems of rewriting theory. These applications show that modal semirings are powerful tools for reasoning algebraically about the finite and infinite dynamics of programs and transition systems.Comment: 29 page

    Least reflexive points of relations

    Get PDF
    Assume a partially ordered set (S,≤) and a relation R on S. We consider various sets of conditions in order to determine whether they ensure the existence of a least reflexive point, that is, a least x such that xRx. This is a generalization of the problem of determining the least fixed point of a function and the conditions under which it exists. To motivate the investigation we first present a theorem by Cai and Paige giving conditions under which iterating R from the bottom element necessarily leads to a minimal reflexive point; the proof is by a concise relation-algebraic calculation. Then, we assume a complete lattice and exhibit sufficient conditions, depending on whether R is partial or not, for the existence of a least reflexive point. Further results concern the structure of the set of all reflexive points; among other results we give a sufficient condition that these form a complete lattice, thus generalizing Tarski’s classical result to the nondeterministic case

    Least reflexive points of relations

    Get PDF
    Assume a partially ordered set (S,<=) and a relation R on S. We consider various sets of conditions in order to determine whether they ensure the existence of a least reflexive point, that is, a least x such that xRx. This is a generalization of the problem of determining the least fixed point of a function and the conditions under which it exists. To motivate the investigation we first present a theorem by Cai and Paige giving conditions under which iterating R from the bottom element necessarily leads to a minimal reflexive point; the proof is by a concise relationalgebraic calculation. Then, we assume a complete lattice and exhibit sufficient conditions, depending on whether R is partial or not, for the existence of a least reflexive point. Further results concern the structure of the set of all reflexive points; among other results we give a sufficient condition that these form a complete lattice, thus generalizing Tarski's classical result to the nondeterministic case

    Characterizing determinacy in Kleene algebras

    Get PDF
    Elements of Kleene algebras can be used, among others, as abstractions of the input-output semantics of nondeterministic programs or as models for the association of pointers with their target objects. In the first case, one seeks to distinguish the subclass of elements that correspond to deterministic programs. In the second case one is only interested in functional correspondences, since it does not make sense for a pointer to point to two different objects. We discuss several candidate notions of determinacy and clarify their relationship. Some characterizations that are equivalent in the case where the underlying Kleene algebra is an (abstract) relation algebra are not equivalent for general Kleene algebras

    Relational style laws and constructs of linear algebra

    Get PDF
    We present a few laws of linear algebra inspired by laws of relation algebra. The linear algebra laws are obtained from the relational ones by replacing union, intersection, composition and converse by the linear algebra operators of addition, Hadamard product, composition and transposition. Many of the modified expressions hold directly or with minor alterations. We also define operators that sum up the content of rows and columns. These share many properties with the relational domain and codomain operators returning a subidentity corresponding to the domain and codomain of a relation. Finally, we use the linear algebra operators to write axioms defining direct sums and direct products and we show that there are other solutions in addition to the traditional – in the relational context – injection and projection relations

    Characterizing determinacy in Kleene algebras (revised version)

    Get PDF
    Elements of Kleene algebras can be used, among others, as abstractions of the input-output semantics of nondeterministic programs or as models for the association of pointers with their target objects. In the first case, one seeks to distinguish the subclass of elements that correspond to deterministic programs. In the second case one is only interested in functional correspondences, since it does not make sense for a pointer to point to two different objects. We discuss several candidate notions of determinacy and clarify their relationship. Some characterizations that are equivalent in the case where the underlying Kleene algebra is an (abstract) relation algebra are not equivalent for general Kleene algebras

    Algebraic Notions of Termination

    Get PDF
    Five algebraic notions of termination are formalised, analysed and compared: wellfoundedness or Noetherity, Löb’s formula, absence of infinite iteration, absence of divergence and normalisation. The study is based on modal semirings, which are additively idempotent semirings with forward and backward modal operators. To model infinite behaviours, idempotent semirings are extended to divergence semirings, divergence Kleene algebras and omega algebras. The resulting notions and techniques are used in calculational proofs of classical theorems of rewriting theory. These applications show that modal semirings are powerful tools for reasoning algebraically about the finite and infinite dynamics of programs and transition systems
    corecore