3 research outputs found

    Exact relationship between the entanglement entropies of XY and quantum Ising chains

    Full text link
    We consider two prototypical quantum models, the spin-1/2 XY chain and the quantum Ising chain and study their entanglement entropy, S(l,L), of blocks of l spins in homogeneous or inhomogeneous systems of length L. By using two different approaches, free-fermion techniques and perturbational expansion, an exact relationship between the entropies is revealed. Using this relation we translate known results between the two models and obtain, among others, the additive constant of the entropy of the critical homogeneous quantum Ising chain and the effective central charge of the random XY chain.Comment: 6 page

    Entanglement entropy of aperiodic quantum spin chains

    Full text link
    We study the entanglement entropy of blocks of contiguous spins in non-periodic (quasi-periodic or more generally aperiodic) critical Heisenberg, XX and quantum Ising spin chains, e.g. in Fibonacci chains. For marginal and relevant aperiodic modulations, the entanglement entropy is found to be a logarithmic function of the block size with log-periodic oscillations. The effective central charge, c_eff, defined through the constant in front of the logarithm may depend on the ratio of couplings and can even exceed the corresponding value in the homogeneous system. In the strong modulation limit, the ground state is constructed by a renormalization group method and the limiting value of c_eff is exactly calculated. Keeping the ratio of the block size and the system size constant, the entanglement entropy exhibits a scaling property, however, the corresponding scaling function may be nonanalytic.Comment: 6 pages, 2 figure

    Entanglement entropy in aperiodic singlet phases

    Full text link
    We study the average entanglement entropy of blocks of contiguous spins in aperiodic XXZ chains which possess an aperiodic singlet phase at least in a certain limit of the coupling ratios. In this phase, where the ground state constructed by a real space renormalization group method, consists (asymptotically) of independent singlet pairs, the average entanglement entropy is found to be a piecewise linear function of the block size. The enveloping curve of this function is growing logarithmically with the block size, with an effective central charge in front of the logarithm which is characteristic for the underlying aperiodic sequence. The aperiodic sequence producing the largest effective central charge is identified, and the latter is found to exceed the central charge of the corresponding homogeneous model. For marginal aperiodic modulations, numerical investigations performed for the XX model show a logarithmic dependence, as well, with an effective central charge varying continuously with the coupling ratio.Comment: 18 pages, 9 figure
    corecore