16 research outputs found
Computational Emotion Analysis From Images: Recent Advances and Future Directions
Emotions are usually evoked in humans by images. Recently, extensive research
efforts have been dedicated to understanding the emotions of images. In this
chapter, we aim to introduce image emotion analysis (IEA) from a computational
perspective with the focus on summarizing recent advances and suggesting future
directions. We begin with commonly used emotion representation models from
psychology. We then define the key computational problems that the researchers
have been trying to solve and provide supervised frameworks that are generally
used for different IEA tasks. After the introduction of major challenges in
IEA, we present some representative methods on emotion feature extraction,
supervised classifier learning, and domain adaptation. Furthermore, we
introduce available datasets for evaluation and summarize some main results.
Finally, we discuss some open questions and future directions that researchers
can pursue.Comment: Accepted chapter in the book "Human Perception of Visual Information
Psychological and Computational Perspective
Affective Image Content Analysis: Two Decades Review and New Perspectives
Images can convey rich semantics and induce various emotions in viewers.
Recently, with the rapid advancement of emotional intelligence and the
explosive growth of visual data, extensive research efforts have been dedicated
to affective image content analysis (AICA). In this survey, we will
comprehensively review the development of AICA in the recent two decades,
especially focusing on the state-of-the-art methods with respect to three main
challenges -- the affective gap, perception subjectivity, and label noise and
absence. We begin with an introduction to the key emotion representation models
that have been widely employed in AICA and description of available datasets
for performing evaluation with quantitative comparison of label noise and
dataset bias. We then summarize and compare the representative approaches on
(1) emotion feature extraction, including both handcrafted and deep features,
(2) learning methods on dominant emotion recognition, personalized emotion
prediction, emotion distribution learning, and learning from noisy data or few
labels, and (3) AICA based applications. Finally, we discuss some challenges
and promising research directions in the future, such as image content and
context understanding, group emotion clustering, and viewer-image interaction.Comment: Accepted by IEEE TPAM