41 research outputs found
Isolation of neuronal chromatin from brain tissue
<p>Abstract</p> <p>Background</p> <p>DNA-protein interactions in mature brain are increasingly recognized as key regulators for behavioral plasticity and neuronal dysfunction in chronic neuropsychiatric disease. However, chromatin assays typically lack single cell resolution, and therefore little is known about chromatin regulation of differentiated neuronal nuclei that reside in brain parenchyma intermingled with various types of non-neuronal cells.</p> <p>Results</p> <p>Here, we describe a protocol to selectively tag neuronal nuclei from adult brain – either by (anti-NeuN) immunolabeling or transgene-derived histone H2B-GFP fusion protein – for subsequent fluorescence-activated sorting and chromatin immunoprecipitation (ChIP). To illustrate an example, we compared histone H3 lysine 4 and 9 methylation marks at select gene promoters in neuronal, non-neuronal and unsorted chromatin from mouse forebrain and human cerebral cortex, and provide evidence for neuron-specific histone methylation signatures.</p> <p>Conclusion</p> <p>With the modifications detailed in this protocol, the method can be used to collect nuclei from specific subtypes of neurons from any brain region for subsequent ChIP with native/un-fixed or crosslinked chromatin preparations. Starting with the harvest of brain tissue, ChIP-ready neuronal nuclei can be obtained within one day.</p
Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells
Based on recent evidence that fatty acid synthase and endogenously produced fatty acid derivatives are required for adipogenesis in 3T3-L1 adipocytes, we conducted a small interfering RNA-based screen to identify other fatty acid-metabolizing enzymes that may mediate this effect. Of 24 enzymes screened, stearoyl-CoA desaturase 2 (SCD2) was found to be uniquely and absolutely required for adipogenesis. Remarkably, SCD2 also controls the maintenance of adipocyte-specific gene expression in fully differentiated 3T3-L1 adipocytes, including the expression of SCD1. Despite the high sequence similarity between SCD2 and SCD1, silencing of SCD1 did not down-regulate 3T3-L1 cell differentiation or gene expression. SCD2 mRNA expression was also uniquely elevated 44-fold in adipose tissue upon feeding mice a high fat diet, whereas SCD1 showed little response. The inhibition of adipogenesis caused by SCD2 depletion was associated with a decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA and protein, whereas in mature adipocytes loss of SCD2 diminished PPARgamma protein levels, with little change in mRNA levels. In the latter case, SCD2 depletion did not change the degradation rate of PPARgamma protein but decreased the metabolic labeling of PPARgamma protein using [(35)S]methionine/cysteine, indicating protein translation was decreased. This requirement of SCD2 for optimal protein synthesis in fully differentiated adipocytes was verified by polysome profile analysis, where a shift in the mRNA to monosomes was apparent in response to SCD2 silencing. These results reveal that SCD2 is required for the induction and maintenance of PPARgamma protein levels and adipogenesis in 3T3-L1 cells
Expression of ITGB8 in Epicardial Adipose Tissue is Highly and Directly Correlated with the Severity of Coronary Atherosclerosis
Background: In patients with coronary artery disease (CAD), epicardial adipose tissue (EAT) has been shown to express increased levels of inflammatory cytokines (IL-1β, IL-6, MCP-1, TNFα) and decreased levels of anti-inflammatory and cardioprotective adipokines. However, it is not known whether or not inflammation in EAT is a primary cause or a secondary response to atherosclerosis. In order to better understand this pathophysiology, we tested the hypothesis that expression of certain genes in EAT would correlate with the degree of coronary atherosclerosis.
Purpose: The purpose of this study was to determine whether there is a difference in gene expression in epicardial fat of patients with and without coronary artery disease and if there is a difference, whether these differentially expressed genes participate in the inflammatory pathways.
Methods: EAT and paired subcutaneous adipose tissue (SAT) samples collected from cardiac surgery patients with and without coronary disease were fixed for microscopy and frozen for RNA extraction. RNA was hybridized to Affymetrix Human Gene 1.0 ST chips. We used an unbiased approach to identify genes highly and differentially expressed in EAT vs. SAT (FC\u3e3.0). The probe intensities for these resultant genes were then correlated with the severity of atherosclerosis in each patient as determined by the Gensini score.
Results:35 genes were differentially expressed in EAT at \u3e3.0 fold change (p
Conclusions: Using an unbiased whole genome approach, we identified ITGB8 and TG2 as genes whose expression is correlated with CAD severity. ITGB8 has been previously shown to be expressed by fibroblasts and functions to activate TGFβ. TGFβ signaling has also been correlated with advanced atherosclerosis. We speculate that EAT expression of ITGB8 may have pro-inflammatory effects, possibly by activating TGFβ, and stimulating recruitment of dendritic cells or T cells to secondary lymphoid organs in EAT. Whether or not this is the case is a goal of future studies
Expression of the Integrin Beta 8 Gene (ITGB8) in Epicardial Adipose Tissue is Highly and Directly Correlated with the Degree of Coronary Atherosclerosis
Background: In patients with coronary artery disease (CAD), epicardial adipose tissue (EAT) expression of inflammatory genes is high while expression of anti-inflammatory genes is low. We hypothesized that expression of certain genes in EAT would correlate directly with the degree of adjacent CAD.
Methods: EAT and paired subcutaneous adipose tissue (SAT) samples were collected from cardiac surgery patients (n=9) with and without CAD. RNA was isolated and hybridized to Affymetrix 1.0 ST chips. Genes differentially expressed in EAT vs. SAT were identified. Probe intensities were correlated with the severity of CAD in each patient using the Gensini score.
Results: 35 genes were differentially expressed in EAT at \u3e3.0 fold change (p
Conclusions: Expression of ITGB8 is directly correlated with CAD severity. ITGB8 has been previously shown to be expressed by fibroblasts and functions to activate TGFβ. TGFβ signaling has also been correlated with advanced atherosclerosis. We speculate that EAT expression of ITGB8 may have pro-inflammatory effects, possibly by activating TGFβ, and stimulating recruitment of dendritic cells or T cells to secondary lymphoid organs in EAT. Whether or not this is the case is a goal of future studies
Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B
Histone methyltransferases specific for the histone H3-lysine 9 residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair, and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited t
Identification of a Novel Large Multigene Deletion and a Frameshift Indel in PDE6B as the Underlying Cause of Early-Onset Recessive Rod-Cone Degeneration
A family, with two affected identical twins with early-onset recessive inherited retinal degeneration, was analyzed to determine the underlying genetic cause of pathology. Exome sequencing revealed a rare and previously reported causative variant (c.1923_1969delinsTCTGGG; p.Asn643Glyfs*29) in th
Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance
OBJECTIVE: Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis.
METHOD: White and brown adipocyte-deficient (Hig2fl/fl x Adiponection cre+) and selective brown/beige adipocyte-deficient (Hig2fl/fl x Ucp1 cre+) mice were generated to investigate the role of Hig2 in adipose depots. Additionally, we used multiple housing temperatures to investigate the role of active brown/beige adipocytes in this process.
RESULTS: Hig2 localized to LDs in SGBS cells, a human adipocyte cell strain. Mice with adipocyte-specific Hig2 deficiency in all adipose depots demonstrated reduced visceral adipose tissue weight and increased glucose tolerance. This metabolic effect could be attributed to brown/beige adipocyte-specific Hig2 deficiency since Hig2fl/fl x Ucp1 cre+ mice displayed the same phenotype. Furthermore, when adipocyte-deficient Hig2 mice were moved to thermoneutral conditions in which non-shivering thermogenesis is deactivated, these improvements were abrogated and glucose intolerance ensued. Adipocyte-specific Hig2 deficient animals displayed no detectable changes in adipocyte lipolysis or energy expenditure, suggesting that Hig2 may not mediate these metabolic effects by restraining lipolysis in adipocytes.
CONCLUSIONS: We conclude that Hig2 localizes to LDs in adipocytes, promoting adipose tissue lipid deposition and that its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 degrees C. Reversal of this phenotype at thermoneutrality in the absence of detectable changes in energy expenditure, adipose mass, or liver triglyceride suggests that Hig2 deficiency triggers a deleterious endocrine or neuroendocrine pathway emanating from brown/beige fat cells
Single Cell Proteomics Analysis of Drug Response Shows its Potential as a Drug Discovery Platform
Single-cell analysis has clearly established itself in biology and biomedical fields as an invaluable tool that allows one to comprehensively understand the relationship between cells, including their types, states, transitions, trajectories, and spatial position. Scientific methods such as fluorescence labeling, nanoscale super-resolution microscopy, advances in single cell RNAseq and proteomics technologies, provide more detailed information about biological processes which were not evident with the analysis of bulk material. This new era of single-cell biology provides a better understanding of such complex biological systems as cancer, inflammation, immunity mechanism and aging processes, and opens the door into the field of drug response heterogeneity. The latest discoveries of cellular heterogeneity gives us an unique understanding of complex biological processes, such as disease mechanism, and will lead to new strategies for better and personalized treatment strategies. Recently, single-cell proteomics techniques that allow quantification of thousands of proteins from single mammalian cells have been introduced. Here we present an improved single-cell mass spectrometry-based proteomics platform called SCREEN (Single Cell pRotEomE aNalysis) for deep and high-throughput single-cell proteome coverage with high efficiency, less turnaround time and with an improved ability for protein quantitation across more cells than previously achieved. We applied this new platform to analyze the single-cell proteomic landscape under different drug treatment over time to uncover heterogeneity in cancer cell response, which for the first time, to our knowledge, has been achieved by mass spectrometry based analytical methods. We discuss challenges in single-cell proteomics, future improvements and general trends with the goal to encourage forthcoming technical developments