4 research outputs found

    Research overview of anti-backlash end face engagement worm gearing

    No full text
    Eliminating the negative effect of gear backlash on transmission precision so as to achieve precise motion transformation remains a problem to be solved in the field of precision transmission. To date, optimization of manufacturing process, new transmission structure and control system are mainly used to solve the above scientific problem, however, the new transmission structure is undoubtedly the best method compared with the methods above based on the analysis of advantages and disadvantages for various methods. In doing so, this paper originally proposes a type of transmission, an anti-backlash end face engagement worm gearing, with certain advantages of no-backlash, high precision and high operating efficiency over other gears and gear systems

    In vitro antibacterial effects of Tanreqing injection combined with vancomycin or linezolid against methicillin-resistant Staphylococcus aureus

    No full text
    Abstract Background Combining conventional drugs and traditional medicine may represent a useful approach to combating antibiotic resistance, which has become a serious threat to global public health. This study aimed to evaluate the potential synergistic interactions between Tanreqing (TRQ) injection, a commercial traditional Chinese medicine formula used for the treatment of upper respiratory tract infection, and selected antibiotics used against methicillin-resistant Staphylococcus aureus (MRSA). Methods The minimum inhibitory concentrations (MICs) of TRQ, vancomycin and linezolid against planktonic MRSA strain were determined by the broth microdilution method. The combined effects of TRQ and antibiotics were studied by the checkerboard method and the time-kill curve assay. The 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay was employed to determine the inhibitory effect of the test compounds alone and in combination against MRSA embedded in biofilms. Results MRSA strain was found to be susceptible to TRQ formula with MIC value 4125 μg/ml, while the MIC values for antibiotics, vancomycin and linezolid, were 2.5 μg/ml. The checkerboard analysis revealed that TRQ markedly enhanced activities of the tested antibiotics by reducing their MICs. In the time-kill analysis, TRQ at 1/2 × MIC in combination with vancomycin at 1/2 × MIC, as well as TRQ at 1/8 × MIC in combination with linezolid at 1/2 × MIC decreased the viable colonies by ≥2log10 CFU/ml, resulting in a potent synergistic effect against planktonic MRSA. In contrast to the tested antibiotics, which did not affect mature MRSA biofilms at subinhibitory concentrations, TRQ alone showed strong ability to disrupt preformed biofilms and induce biofilm cell death. The combination of TRQ with vancomycin or linezolid at sub-MIC concentrations resulted in a synergistic antibiofilm effect significantly higher than for each single agent. Conclusions This study provides the first in vitro evidence on the synergistic effects of TRQ and vancomycin or linezolid against planktonic and biofilm MRSA, and revealed their optimal combination doses, thereby providing a rational basis for the combination therapies against MRSA
    corecore