5 research outputs found

    Understanding the fine-scale heterogeneity and spatial drivers of malaria transmission in Kenya using model-based geostatistical methods

    Get PDF
    Malaria remains a public health concern. Monitoring the fine-scale heterogeneity of the malaria burden enables more targeted control efforts. Although malaria indicator surveys (MIS) have been crucial in evaluating the progress of malaria control interventions, they are only designed to provide a cross-sectional national and regional malaria disease burden. Recent advances in geostatistical methods allow us to interpolate national survey data to describe subnational disease burden that is crucial in informing targeted control. A binomial geostatistical model employing Markov chain Monte Carlo (MCMC) parameter estimation methods is used to understand the spatial drivers of malaria risk in Kenya and to predict malaria risk at a fine-scale resolution, including identifying hotspots. A total of 11,549 children aged six months to 14 years from 207 clusters were sampled in this survey and used in the present analysis. The national malaria prevalence based on the data was 8.4%, with the highest in the lake endemic zone (18.1%) and the lowest in the low-risk zone (<1%). The analysis shows that elevation, proportion of insectcide treated net (ITN) distributed, rainfall, temperature and urbanization covariates are all significant predictors of malaria transmission. The 5x5 Km resolution maps show that malaria is heterogeneous in Kenya, with hotspot areas in the lake endemic area, the coastal areas, and some parts of the shores of Lake Turkana and Kajiado. The high-resolution malaria prevalence maps produced as part of the analysis have shown that Kenya has additional malaria hotspots, especially in areas least expected. These findings call for a rethinking of malaria burden classification in some regions for effective planning, implementation, resource mobilization, monitoring, and evaluation of malaria interventions in the country

    Two decades of malaria control in Malawi: Geostatistical Analysis of the changing malaria prevalence from 2000-2022

    Get PDF
    Background Malaria remains a public health problem in Malawi and has a serious socio-economic impact on the population. In the past two decades, available malaria control measures have been substantially scaled up, such as insecticide-treated bed nets, artemisinin-based combination therapies, and, more recently, the introduction of the malaria vaccine, the RTS,S/AS01. In this paper, we describe the epidemiology of malaria for the last two decades to understand the past transmission and set the scene for the elimination agenda. Methods A collation of parasite prevalence surveys conducted between the years 2000 and 2022 was done. A spatio-temporal geostatistical model was fitted to predict the yearly malaria risk for children aged 2–10 years (PfPR 2–10) at 1×1 km spatial resolutions. Parameter estimation was done using the Monte Carlo maximum likelihood methods. District level prevalence estimates adjusted for population are calculated for the years 2000 to 2022. Results A total of 2,595 sampled unique locations from 2000 to 2022 were identified through the data collation exercise. This represents 70,565 individuals that were sampled in the period. In general, the PfPR2_10 declined over the 22 years. The mean modeled national PfPR2_10 in 2000 was 43.93 % (95% CI:17.9 to 73.8%) and declined to 19.2% (95%CI 7.49 to 37.0%) in 2022. The smoothened estimates of PfPR2_10 indicate that malaria prevalence is very heterogeneous with hotspot areas concentrated on the southern shores of Lake Malawi and the country's central region. Conclusions The last two decades are associated with a decline in malaria prevalence, highly likely associated with the scale up of control interventions. The country should move towards targeted malaria control approaches informed by surveillance data

    Healthcare providers’ level of involvement in provision of smoking cessation interventions in public health facilities in Kenya

    No full text
    Healthcare providers can play a major role in tobacco control by providing smoking cessation interventions to smoking patients. The objective of this study was to establish healthcare providers’ practices regarding smoking cessation interventions in selected health facilities in Kiambu County, Kenya. This was a descriptive cross-sectional study carried out among healthcare providers working in public health facilities in Kiambu County, Kenya. Self-administered questionnaires were distributed to 400 healthcare providers selected using a two-stage stratified sampling technique. Only 35% of the healthcare providers surveyed reported that they always asked patients about their smoking status. Less than half (44%) reported that they always advised smoking patients to quit. Respondents who had received training on smoking cessation interventions were 3.7 times more likely to have higher practice scores than those without training (OR=3.66; 95%CI: 1.63-8.26; P=0.003). Majority of the healthcare providers do not routinely provide smoking cessation interventions to their patients. Measures are needed to increase health worker’s involvement in provision of smoking cessation care in Kenya

    Malaria Burden Stratification in Malawi- A report of a consultative workshop to inform the 2023-2030 Malawi Malaria Strategic Plan

    Get PDF
    Background: Malawi's National Malaria Control Programme (NMCP) is developing a new strategic plan for 2023-2030 to combat malaria and recognizes that a blanket approach to malaria interventions is no longer feasible. To inform this new strategy, the NMCP set up a task force comprising 18 members from various sectors, which convened a meeting to stratify the malaria burden in Malawi and recommend interventions for each stratum. Methods: The burden stratification workshop took place from November 29 to December 2, 2022, in Blantyre, Malawi, and collated essential data on malaria burden indicators, such as incidence, prevalence, and mortality. Workshop participants reviewed the malaria burden and intervention coverage data to describe the current status and identified the districts as a appropriate administrative level for stratification and action. Two scenarios were developed for the stratification, based on composites of three variables. Scenario 1 included incidence, prevalence, and under-five all-cause mortality, while Scenario 2 included total malaria cases, prevalence, and under-five all-cause mortality counts. The task force developed four burden strata (highest, high, moderate, and low) for each scenario, resulting in a final list of districts assigned to each stratum. Results: The task force concluded with 10 districts in the highest-burden stratum (Nkhotakota, Salima, Mchinji, Dowa, Ntchisi, Mwanza, Likoma, Lilongwe, Kasungu and Mangochi) 11 districts in the high burden stratum (Chitipa, Rumphi, Nkhata Bay, Dedza, Ntcheu, Neno, Thyolo, Nsanje, Zomba, Mzimba and Mulanje) and seven districts in the moderate burden stratum (Karonga, Chikwawa, Balaka, Machinga, Phalombe, Blantyre, and Chiradzulu). There were no districts in the low-burden stratum. Conclusion: The next steps for the NMCP are to review context-specific issues driving malaria transmission and recommend interventions for each stratum. Overall, this burden stratification workshop provides a critical foundation for developing a successful malaria strategic plan for Malawi

    Two decades of malaria control in Malawi: Geostatistical Analysis of the changing malaria prevalence from 2000-2022 [version 2; peer review: 1 approved, 3 approved with reservations]

    No full text
    Background Malaria remains a public health problem in Malawi and has a serious socio-economic impact on the population. In the past two decades, available malaria control measures have been substantially scaled up, such as insecticide-treated bed nets, artemisinin-based combination therapies, and, more recently, the introduction of the malaria vaccine, the RTS,S/AS01. In this paper, we describe the epidemiology of malaria for the last two decades to understand the past transmission and set the scene for the elimination agenda. Methods A collation of parasite prevalence surveys conducted between the years 2000 and 2022 was done. A spatio-temporal geostatistical model was fitted to predict the yearly malaria risk for children aged 2–10 years (PfPR 2–10) at 1×1 km spatial resolutions. Parameter estimation was done using the Monte Carlo maximum likelihood method. District-level prevalence estimates adjusted for population are calculated for the years 2000 to 2022. Results A total of 2,595 sampled unique locations from 2000 to 2022 were identified through the data collation exercise. This represents 70,565 individuals that were sampled in the period. In general, the PfPR2_10 declined over the 22 years. The mean modelled national PfPR2_10 in 2000 was 43.93 % (95% CI:17.9 to 73.8%) and declined to 19.2% (95%CI 7.49 to 37.0%) in 2022. The smoothened estimates of PfPR2_10 indicate that malaria prevalence is very heterogeneous with hotspot areas concentrated on the southern shores of Lake Malawi and the country's central region. Conclusions The last two decades are associated with a decline in malaria prevalence, highly likely associated with the scale-up of control interventions. The country should move towards targeted malaria control approaches informed by surveillance data
    corecore