1,425 research outputs found
Contemplating Mindfulness at Work: An Integrative Review
Mindfulness research activity is surging within organizational science. Emerging evidence across multiple fields suggests that mindfulness is fundamentally connected to many aspects of workplace functioning, but this knowledge base has not been systematically integrated to date. This review coalesces the burgeoning body of mindfulness scholarship into a framework to guide mainstream management research investigating a broad range of constructs. The framework identifies how mindfulness influences attention, with downstream effects on functional domains of cognition, emotion, behavior, and physiology. Ultimately, these domains impact key workplace outcomes, including performance, relationships, and well-being. Consideration of the evidence on mindfulness at work stimulates important questions and challenges key assumptions within management science, generating an agenda for future research
Cascading the use of Web 2.0 technology in secondary schools in the United Kingdom: identifying the barriers beyond pre-service training
This paper reports on research that took place at Nottingham Trent University and Sheffield Hallam University, United Kingdom, over two years. The research focuses on the use of Web 2.0 technology, specifically web logs, with pre-service teachers, both during their university programme and the first year of teaching as full-time newly qualified teachers (NQTs). The purpose of this research was to add a developing body of knowledge by identifying whether technology used by pre-service teachers during their training course can be cascaded into their practice once qualified. Key findings identify a number of enablers and barriers to cascading technology in the classroom; these include curriculum time, pupil skills and support. The research concludes that early professional support and development should be on-going and assumptions about new teachers as champions of cascading innovative use of Web 2 technologies into their practice as NQTs may be over optimisti
A new technique for elucidating -decay schemes which involve daughter nuclei with very low energy excited states
A new technique of elucidating -decay schemes of isotopes with large
density of states at low excitation energies has been developed, in which a
Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial
hyper-pure germanium detectors. The power of this technique has been
demonstrated on the example of 183Hg decay. Mass-separated samples of 183Hg
were produced by a deposition of the low-energy radioactive-ion beam delivered
by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe
detector allowed rays energies to be determined with a precision of a
few tens of electronvolts, which was sufficient for the analysis of the
Rydberg-Ritz combinations in the level scheme. The timestamped structure of the
data was used for unambiguous separation of rays arising from the
decay of 183Hg from those due to the daughter decays
Influence of Carcass Chilling System on Chuck, Loin, and Round Temperature Decline, Carcass Characteristics, and Tenderness
Objective Determine the effect of chilling systems on beef carcass temperature decline, carcass characteristics, and tenderness
Investigations in vivo of the effects of carbogen breathing on 5-fluorouracil pharmacokinetics and physiology of solid rodent tumours
Purpose: We have shown previously that carbogen (95% 02, 5% CO2) breathing by rodents can increase uptake of anticancer drugs into tumours. The aim of this study was to extend these observations to other rodent models using the anticancer drug 5-fluorouracil (5FU). 5FU pharmacokinetics in tumour and plasma and physiological effects on the tumour by carbogen were investigated to determine the locus of carbogen action on augmenting tumour uptake of 5FU. Methods: Two different tumour models were used, rat GH3 prolactinomas xenografted s.c. into nude mice and rat H9618a hepatomas grown s.c. in syngeneic Buffalo rats. Uptake and metabolism of 5FU in both tumour models with or without host carbogen breathing was studied non-invasively using fluorine-19 magnetic resonance spectroscopy (19F-MRS), while plasma samples from Buffalo rats were used to construct a NONMEM pharmacokinetic model. Physiological effects of carbogen on tumours were studied using 31P-MRS for energy status (NTP/Pi) and pH, and gradient-recalled echo magnetic resonance imaging (GRE-MRI) for blood flow and oxygenation. Results: In both tumour models, carbogan-induced GRE-MRI signal intensity increases of ∼60% consistent with an increase in tumour blood oxygenation and/or flow. In GH3 xenografts, 19F-MRS showed that carbogen had no significant effect on 5FU uptake and metabolism by the tumours, and 31P-MRS showed there was no change in the NTP/Pi ratio. In H9618a hepatomas, 19F-MRS showed that carbogen had no effect on tumour 5FU uptake but significantly (p=0.0003) increased 5FU elimination from the tumour (i.e. decreased the t1/2) and significantly (p=0.029) increased (53%) the rate of metabolism to cytotoxic fluoronucleotides (FNuct). The pharmacokinetic analysis showed that carbogen increased the rate of tumour uptake of 5FU from the plasma but also increased the rate of removal. 31P-MRS showed there were significant (p≤0.02) increases in the hepatoma NTP/Pi ratio of 49% and transmembrane pH gradient of 0.11 units. Conclusions: We suggest that carbogen can transiently increase tumour blood flow, but this effect alone may not increase uptake of anticancer drugs without a secondary mechanism operating. In the case of the hepatoma, the increase in tumour energy status and pH gradient may be sufficient to augment 5FU metabolism to cytotoxic FNuct, while in the GH3 xenografts this was not the case. Thus carbogen breathing does not universally lead to increased uptake of anticancer drug
In-beam fast-timing measurements in 103,105,107Cd
Fast-timing measurements were performed recently in the region of the
medium-mass 103,105,107Cd isotopes, produced in fusion evaporation reactions.
Emitted gamma-rays were detected by eight HPGe and five LaBr3:Ce detectors
working in coincidence. Results on new and re-evaluated half-lives are
discussed within a systematic of transition rates. The states in
103,105,107Cd are interpreted as arising from a single-particle excitation. The
half-life analysis of the states in 103,105,107Cd shows no change in
the single-particle transition strength as a function of the neutron number
Acute liver toxicity with ifosfamide in the treatment of sarcoma: a case report
<p>Abstract</p> <p>Introduction</p> <p>Ifosfamide is a chemotherapy agent infrequently associated with liver toxicity. To the best of our knowledge, this report is the first to describe serious liver toxicity associated with ifosfamide used in combination with doxorubicin that caused acute but fully reversible liver failure and encephalopathy. This report reviews the possible mechanisms by which ifosfamide causes this adverse effect.</p> <p>Case report</p> <p>A 61-year-old Caucasian woman who presented with an inoperable right neck mass due to synovial sarcoma was treated with standard-dose ifosfamide and doxorubicin. Within 24 hours of completing the first cycle of chemotherapy, she developed significant derangements in liver function, with a 250-fold increase in transaminase and associated synthetic function impairment and encephalopathy. No other causes of liver failure were identified. Both biochemical tests and encephalopathy were reversed after supportive management and treatment with <it>N</it>-acetylcysteine. No liver toxicity was observed with subsequent cycles of chemotherapy with doxorubicin alone.</p> <p>Conclusion</p> <p>This case highlights the possibility that chemotherapy agents can cause rare and idiosyncratic toxicities, so physicians must be vigilant for drug reactions, especially when patients do not respond to usual treatment.</p
Acute liver toxicity with ifosfamide in the treatment of sarcoma: a case report
<p>Abstract</p> <p>Introduction</p> <p>Ifosfamide is a chemotherapy agent infrequently associated with liver toxicity. To the best of our knowledge, this report is the first to describe serious liver toxicity associated with ifosfamide used in combination with doxorubicin that caused acute but fully reversible liver failure and encephalopathy. This report reviews the possible mechanisms by which ifosfamide causes this adverse effect.</p> <p>Case report</p> <p>A 61-year-old Caucasian woman who presented with an inoperable right neck mass due to synovial sarcoma was treated with standard-dose ifosfamide and doxorubicin. Within 24 hours of completing the first cycle of chemotherapy, she developed significant derangements in liver function, with a 250-fold increase in transaminase and associated synthetic function impairment and encephalopathy. No other causes of liver failure were identified. Both biochemical tests and encephalopathy were reversed after supportive management and treatment with <it>N</it>-acetylcysteine. No liver toxicity was observed with subsequent cycles of chemotherapy with doxorubicin alone.</p> <p>Conclusion</p> <p>This case highlights the possibility that chemotherapy agents can cause rare and idiosyncratic toxicities, so physicians must be vigilant for drug reactions, especially when patients do not respond to usual treatment.</p
Quantum feedback with weak measurements
The problem of feedback control of quantum systems by means of weak
measurements is investigated in detail. When weak measurements are made on a
set of identical quantum systems, the single-system density matrix can be
determined to a high degree of accuracy while affecting each system only
slightly. If this information is fed back into the systems by coherent
operations, the single-system density matrix can be made to undergo an
arbitrary nonlinear dynamics, including for example a dynamics governed by a
nonlinear Schr\"odinger equation. We investigate the implications of such
nonlinear quantum dynamics for various problems in quantum control and quantum
information theory, including quantum computation. The nonlinear dynamics
induced by weak quantum feedback could be used to create a novel form of
quantum chaos in which the time evolution of the single-system wave function
depends sensitively on initial conditions.Comment: 11 pages, TeX, replaced to incorporate suggestions of Asher Pere
- …