3 research outputs found

    Temporal response of the tiger salamander (Ambystoma tigrinum) to 3,000 years of climatic variation

    Get PDF
    BACKGROUND: Amphibians are sensitive indicators of environmental conditions and show measurable responses, such as changes in phenology, abundance and range limits to local changes in precipitation and temperature regimes. Amphibians offer unique opportunities to study the important ecological and evolutionary implications of responses in life history characteristics to climatic change. We analyzed a late-Holocene fossil record of the Tiger Salamander (Ambystoma tigrinum) for evidence of population-level changes in body size and paedomorphosis to climatic change over the last 3000 years. RESULTS: We found a significant difference in body size index between paedomorphic and metamorphic individuals during the time interval dominated by the Medieval Warm Period. There is a consistent ratio of paedomorphic to metamorphic specimens through the entire 3000 years, demonstrating that not all life history characteristics of the population were significantly altered by changes in climate on this timescale. CONCLUSION: The fossil record of Ambystoma tigrinum we used spans an ecologically relevant timescale appropriate for understanding population and community response to projected climatic change. The population-level responses we documented are concordant with expectations based on modern environmental studies, and yield insight into population-level patterns across hundreds of generations, especially the independence of different life history characteristics. These conclusions lead us to offer general predictions about the future response of this species based on likely scenarios of climatic warming in the Rocky Mountain region

    Experimental exposures of boreal toads (Bufo boreas) to a pathogenic Chytrid fungus (Batrachochytrium dendrobatidis)

    No full text
    One of the major causes of worldwide amphibian declines is a skin infection caused by a pathogenic chytrid fungus (Batrachochytrium dendrobatidis). This study documents the interactions between this pathogen and a susceptible amphibian host, the boreal toad (Bufo boreas). The amount of time following exposure until death is influenced by the dosage of infectious zoospores, duration of exposure, and body size of the toad. The significant relation between dosage and the number of days survived (dose-response curve) supports the hypothesis that the degree of infection must reach a particular threshold of about 107–108 zoosporangia before death results. Variation in air temperature between 12°C and 23°C had no significant effect on survival time. The infection can be transmitted from infected to healthy animals by contact with water containing zoospores; no physical contact between animals is required. These results are correlated with observations on the population biology of boreal toads in which mortalities associated with B. dendrobatidis have been identified
    corecore