4 research outputs found

    Hypersensitivity pneumonitis: lessons for diagnosis and treatment of a rare entity in children

    Get PDF
    Hypersensitivity pneumonitis (HP) also called exogenous allergic alveolitis = extrinsic allergic alveolitis in children is an uncommon condition and may not be recognized and treated appropriately. To assess current means of diagnosis and therapy and compare this to recommendations, we used the Surveillance Unit for Rare Paediatric Disorders (ESPED) to identify incident cases of HP in Germany during 2005/6. In addition, cases of HP reported for reference from all over Germany to our center in the consecutive year were included. Twenty-three children with confirmed pediatric HP were identified. All (age 9.4 y (4.4-15.1) presented with dyspnoea at rest or with exercise, mean FVC was 39% of predicted, seven of the 23 children already had a chronic disease state at presentation. IgG against bird was elevated in 20, and against fungi in 15. Bronchoalveolar lavage was done in 18 subjects (41% lymphocytes, CD4/CD8 1.99), and lung biopsy in 6. Except 2, all children were treated with prolonged courses of systemic steroids. Outcome was not favourable in all cases. Late diagnosis in up to a quarter of the children with HP and inappropriate steroid treatment must be overcome to improve management of HP. Inclusion of children with HP into international, web-based registry studies will help to study and follow up such rare lung diseases

    Long-term follow-up and treatment of congenital alveolar proteinosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical presentation, diagnosis, management and outcome of molecularly defined congenital pulmonary alveolar proteinosis (PAP) due to mutations in the GM-CSF receptor are not well known.</p> <p>Case presentation</p> <p>A 2 1/2 years old girl was diagnosed as having alveolar proteinosis. Whole lung lavages were performed with a new catheter balloon technique, feasible in small sized airways. Because of some interstitial inflammation in the lung biopsy and to further improve the condition, empirical therapy with systemic steroids and azathioprin, and inhaled and subcutaneous GMCSF, were used. Based on clinical measures, total protein and lipid recovered by whole lung lavages, all these treatments were without benefit. Conversely, severe respiratory viral infections and an invasive aspergillosis with aspergilloma formation occurred. Recently the novel homozygous stop mutation p.Ser25X of the GMCSF receptor alpha chain was identified in the patient. This mutation leads to a lack of functional GMCSF receptor and a reduced response to GMCSF stimulation of CD11b expression of mononuclear cells of the patient. Subsequently a very intense treatment with monthly lavages was initiated, resulting for the first time in complete resolution of partial respiratory insufficiency and a significant improvement of the overall somato-psychosocial condition of the child.</p> <p>Conclusions</p> <p>The long term management from early childhood into young adolescence of severe alveolar proteinosis due to GMCSF receptor deficiency requires a dedicated specialized team to perform technically demanding whole lung lavages and cope with complications.</p

    Sumoylation of the Transcription Factor NFATc1 Leads to Its Subnuclear Relocalization and Interleukin-2 Repression by Histone Deacetylase*S⃞

    No full text
    The family of NFAT (nuclear factor of activated T-cells) transcription factors plays an important role in cytokine gene regulation. In peripheral T-cells NFATc1 and -c2 are predominantly expressed. Because of different promoter and poly(A) site usage as well as alternative splicing events, NFATc1 is synthesized in multiple isoforms. The highly inducible NFATc1/A contains a relatively short C terminus, whereas the longer, constitutively expressed isoform NFATc1/C spans an extra C-terminal peptide of 246 amino acids. Interestingly, this NFATc1/C-specific terminus can be highly sumoylated. Upon sumoylation, NFATc1/C, but not the unsumoylated NFATc1/A, translocates to promyelocytic leukemia nuclear bodies. This leads to interaction with histone deacetylases followed by deacetylation of histones, which in turn induces transcriptionally inactive chromatin. As a consequence, expression of the NFATc1 target gene interleukin-2 is suppressed. These findings demonstrate that the modification by SUMO (small ubiquitin-like modifier) converts NFATc1 from an activator to a site-specific transcriptional repressor, revealing a novel regulatory mechanism for NFATc1 function
    corecore