17 research outputs found

    On the predictability of supramolecular interactions in molecular cocrystals-the view from the bench

    Get PDF
    A series of cocrystals involving theophylline and fluorobenzoic acids highlights the difficulty of predicting supramolecular interactions in molecular crystals.MKC and DKB gratefully acknowledge financial support from the UCL Faculty of Mathematical and Physical Sciences. DKB and WJ thank the Royal Society for a Newton International Fellowship and the Isaac Newton Trust (Trinity College, University of Cambridge) for funding. MA thanks the EPSRC for a studentship, while SAS acknowledges funding through the EPSRC CASE scheme with Pfizer. We are grateful for computational support from the UK national high performance computing service, ARCHER, for which access was obtained via the UKCP consortium and funded by EPSRC grant (EP/K013564/1).This is the final version of the article. It first appeared from the Royal Society of Chemistry via https://doi.org//10.1039/C6CE00293

    Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall

    Get PDF
    Development of the cerebral wall is characterized by partially overlapping histogenetic events. However, little is known with regards to when, where, and how growing axonal pathways interact with progenitor cell lineages in the proliferative zones of the human fetal cerebrum. We analyzed the developmental continuity and spatial distribution of the axonal sagittal strata (SS) and their relationship with proliferative zones in a series of human brains (8-40 post-conceptional weeks; PCW) by comparing histological, histochemical, and immunocytochemical data with magnetic resonance imaging (MRI). Between 8.5 and 11 PCW, thalamocortical fibers from the intermediate zone (IZ) were initially dispersed throughout the subventricular zone (SVZ), while sizeable axonal "invasion" occurred between 12.5 and 15 PCW followed by callosal fibers which "delaminated" the ventricular zone-inner SVZ from the outer SVZ (OSVZ). During midgestation, the SS extensively invaded the OSVZ, separating cell bands, and a new multilaminar axonal-cellular compartment (MACC) was formed. Preterm period reveals increased complexity of the MACC in terms of glial architecture and the thinning of proliferative bands. The addition of associative fibers and the formation of the centrum semiovale separated the SS from the subplate. In vivo MRI of the occipital SS indicates a "triplet" structure of alternating hypointense and hyperintense bands. Our results highlighted the developmental continuity of sagittally oriented "corridors" of projection, commissural and associative fibers, and histogenetic interaction with progenitors, neurons, and glia. Histogenetical changes in the MACC, and consequently, delineation of the SS on MRI, may serve as a relevant indicator of white matter microstructural integrity in the developing brain

    Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall

    No full text
    corecore