1,034 research outputs found

    Carbon supported CdSe nanocrystals

    Full text link
    Insights to the mechanism of CdSe nanoparticle attachment to carbon nanotubes following the hot injection method are discussed. It was observed that the presence of water improves the nanotube coverage while Cl containing media are responsible for the shape transformation of the nanoparticles and further attachment to the carbon lattice. The experiments also show that the mechanism taking place involves the right balance of several factors, namely, low passivated nanoparticle surface, particles with well-defined crystallographic facets, and interaction with an organics-free sp2 carbon lattice. Furthermore, this procedure can be extended to cover graphene by quantum dots.Comment: 5 pages, 5 figure

    A primer in artificial intelligence in cardiovascular medicine

    Get PDF
    Driven by recent developments in computational power, algorithms and web-based storage resources, machine learning (ML)-based artificial intelligence (AI) has quickly gained ground as the solution for many technological and societal challenges. AI education has become very popular and is oversubscribed at Dutch universities. Major investments were made in 2018 to develop and build the first AI-driven hospitals to improve patient care and reduce healthcare costs. AI has the potential to greatly enhance traditional statistical analyses in many domains and has been demonstrated to allow the discovery of 'hidden' information in highly complex datasets. As such, AI can also be of significant value in the diagnosis and treatment of cardiovascular disease, and the first applications of AI in the cardiovascular field are promising. However, many professionals in the cardiovascular field involved in patient care, education or science are unaware of the basics behind AI and the existing and expected applications in their field. In this review, we aim to introduce the broad cardiovascular community to the basics of modern ML-based AI and explain several of the commonly used algorithms. We also summarise their initial and future applications relevant to the cardiovascular field

    Oligodendrocyte Nf1 Controls Aberrant Notch Activation and Regulates Myelin Structure and Behavior

    Get PDF
    The RASopathy neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant genetic disorders. In NF1 patients, neurological issues may result from damaged myelin, and mice with a neurofibromin gene (Nf1) mutation show white matter (WM) defects including myelin decompaction. Using mouse genetics, we find that altered Nf1 gene-dose in mature oligodendrocytes results in progressive myelin defects and behavioral abnormalities mediated by aberrant Notch activation. Blocking Notch, upstream mitogen-activated protein kinase (MAPK), or nitric oxide signaling rescues myelin defects in hemizygous Nf1 mutants, and pharmacological gamma secretase inhibition rescues aberrant behavior with no effects in wild-type (WT) mice. Concomitant pathway inhibition rescues myelin abnormalities in homozygous mutants. Notch activation is also observed in Nf1+/− mouse brains, and cells containing active Notch are increased in NF1 patient WM. We thus identify Notch as an Nf1 effector regulating myelin structure and behavior in a RASopathy and suggest that inhibition of Notch signaling may be a therapeutic strategy for NF1

    Multi-component Transparent Conducting Oxides: Progress in Materials Modelling

    Full text link
    Transparent conducting oxides (TCOs) play an essential role in modern optoelectronic devices through their combination of electrical conductivity and optical transparency. We review recent progress in our understanding of multi-component TCOs formed from solid-solutions of ZnO, In2O3, Ga2O3 and Al2O3, with a particular emphasis on the contributions of materials modelling, primarily based on Density Functional Theory. In particular, we highlight three major results from our work: (i) the fundamental principles governing the crystal structures of multi-component oxide structures including (In2O3)(ZnO)n, named IZO, and (In2O3)m(Ga2O3)l(ZnO)n, named IGZO; (ii) the relationship between elemental composition and optical and electrical behaviour, including valence band alignments; (iii) the high-performance of amorphous oxide semiconductors. From these advances, the challenge of the rational design of novel electroceramic materials is discussed.Comment: Part of a themed issue of Journal of Physics: Condensed Matter on "Semiconducting Oxides". In Press (2011

    Parametric Forcing of Waves with Non-Monotonic Dispersion Relation: Domain Structures in Ferrofluids?

    Full text link
    Surface waves on ferrofluids exposed to a dc-magnetic field exhibit a non-monotonic dispersion relation. The effect of a parametric driving on such waves is studied within suitable coupled Ginzburg-Landau equations. Due to the non-monotonicity the neutral curve for the excitation of standing waves can have up to three minima. The stability of the waves with respect to long-wave perturbations is determined viavia a phase-diffusion equation. It shows that the band of stable wave numbers can split up into two or three sub-bands. The resulting competition between the wave numbers corresponding to the respective sub-bands leads quite naturally to patterns consisting of multiple domains of standing waves which differ in their wave number. The coarsening dynamics of such domain structures is addressed.Comment: 23 pages, 6 postscript figures, composed using RevTeX. Submitted to PR

    Management of bone metastasis and cancer treatment-induced bone loss during the COVID-19 pandemic: An international perspective and recommendations

    Get PDF
    Optimum management of patients with cancer during the COVID-19 pandemic has proved extremely challenging. Patients, clinicians and hospital authorities have had to balance the risks to patients of attending hospital, many of whom are especially vulnerable, with the risks of delaying or modifying cancer treatment. Those whose care has been significantly impacted include patients suffering from the effects of cancer on bone, where delivering the usual standard of care for bone support has often not been possible and clinicians have been forced to seek alternative options for adequate management. At a virtual meeting of the Cancer and Bone Society in July 2020, an expert group shared experiences and solutions to this challenge, following which a questionnaire was sent internationally to the symposium's participants, to explore the issues faced and solutions offered. 70 respondents, from 9 countries (majority USA, 39%, followed by UK, 19%) included 50 clinicians, spread across a diverse range of specialties (but with a high proportion, 64%, of medical oncologists) and 20 who classified themselves as non-clinical (solely lab-based). Spread of clinician specialty across tumour types was breast (65%), prostate (27%), followed by renal, myeloma and melanoma. Analysis showed that management of metastatic bone disease in all solid tumour types and myeloma, adjuvant bisphosphonate breast cancer therapy and cancer treatment induced bone loss, was substantially impacted. Respondents reported delays to routine CT scans (58%), standard bone scans (48%) and MRI scans (46%), though emergency scans were less affected. Delays in palliative radiotherapy for bone pain were reported by 31% of respondents with treatments often involving only a single dose without fractionation. Delays to, or cancellation of, prophylactic surgery for bone pain were reported by 35% of respondents. Access to treatments with intravenous bisphosphonates and subcutaneous denosumab was a major problem, mitigated by provision of drug administration at home or in a local clinic, reduced frequency of administration or switching to oral bisphosphonates taken at home. The questionnaire also revealed damaging delays or complete stopping of both clinical and laboratory research. In addition to an analysis of the questionnaire, this paper presents a rationale and recommendations for adaptation of the normal guidelines for protection of bone health during the pandemic

    Diurnal Immune Cell Migration Patterns Characterized in the Spaceflight Environment

    Get PDF
    Daily diurnal immune rhythm shapes biological pathways of organisms and closely aligns with optimizing energy usage in response to environmental light-dark cycles. Immune mobilization depends on diurnal signals to regulate immunity. In spaceflight, disrupted circadian rhythms and immune systems are noted. However, crosstalk between these systems has not been fully characterized. To fill this knowledge gap, we utilized a ground-based model of spaceflight to phenotype diurnal immunity in mice. For this, 24-week-old male and female mice were exposed to a combination of single-housed, acute 15cGy 5-ion GCRsim irradiation and continuous hindlimb unloading for 2 weeks on a light:dark [12hr:12hr] cycle throughout. Blood was collected at 24 hours and 2 weeks post irradiation and flow cytometrically profiled. Additionally, ribo-depleted, bulk RNA sequencing characterized unique, diurnal and sex-specific biosignatures. This work expands our understanding of diurnal immunity which is important to consider for personalized medicine directives for astronauts. This work was supported in part by the NASA Human Research Program (HRP) Human Factors Behavioral Performance Element Grant 18 18FLAG 2 0028 to AER and Embry-Riddle Start-up grant to Dr. Amber Paul

    Risk factors for hepatitis B virus infection in Rio de Janeiro, Brazil

    Get PDF
    BACKGROUND: Despite international efforts to prevent hepatitis B virus (HBV) infection through global vaccination programs, new cases are still being reported throughout the world. METHODS: To supply data that might assist in improving preventive measures and national surveillance for HBV infection, a cross-sectional study was conducted among individuals referred to the Brazilian National Reference Center for Viral Hepatitis (Rio de Janeiro) during a two-year period. Reported risk factors among infected subjects ("HBV-positive") were compared to those of subjects never exposed ("HBV-negative") to HBV. Two subgroups were further identified within the HBV-positive group, "acute" infection and "non-acute" infection. RESULTS: A total of 1,539 subjects were tested for HBV, of which 616 were HBV-positive (79 acute infection and 537 non-acute infection). HBV-positive subjects were more likely to be of male gender (63% versus 47%); and to report multiple sexual partners (12% versus 6%) and illicit drug use (IDU and/or intranasal cocaine use) (6% versus 3%). Among the HBV-positive subgroups, age differed significantly, with 48% being under 30 years of age in subjects acutely infected compared to 17% in those with non-acute infection. CONCLUSIONS: The association of multiple sexual partners with past HBV infection and the age distribution of currently infected subjects suggest that sexual transmission played a major role in the transmission of HBV in this study population. Thus, vaccination during adolescence should be considered

    Hypothalamic Protein Kinase C Regulates Glucose Production

    Get PDF
    OBJECTIVE—A selective rise in hypothalamic lipid metabolism and the subsequent activation of SUR1/Kir6.2 ATP-sensitive K+ (KATP) channels inhibit hepatic glucose production. The mechanisms that link the ability of hypothalamic lipid metabolism to the activation of KATP channels remain unknown
    corecore