8 research outputs found
Synthesis, Half-Wave Potentials and Antiproliferative Activity of 1-Aryl-substituted Aminoisoquinolinequinones
The synthesis of a variety of 1-aryl-7-phenylaminoisoquinolinequinones from 1,4-benzoquinone and arylaldehydes via the respective 1-arylisoquinolinequinones is reported. The cyclic voltammograms of the new compounds exhibit two one-electron reduction waves to the corresponding radical-anion and dianion and two quasi-reversible oxidation peaks. The half-wave potential values (EI½) of the members of the series have proven sensitive to the electron-donor effect of the aryl group (phenyl, 2-thienyl, 2-furyl) at the 1-position as well as to the phenylamino groups (anilino, p-anisidino) at the 7-position. The antiproliferative activity of the new compounds was evaluated in vitro using the MTT colorimetric method against one normal cell line (MRC-5 lung fibroblasts) and two human cancer cell lines: AGS human gastric adenocarcinoma and HL-60 human promyelocytic leukemia cells in 72-h drug exposure assays. Among the series, compounds 5a, 5b, 5g, 5h, 6a and 6d exhibited interesting antiproliferative activities against human gastric adenocarcinoma. The 1-arylisoquinolinequinone 6a was found to be the most promising active compound against the tested cancer cell lines in terms of IC50 values (1.19; 1.24 µM) and selectivity index (IS: 3.08; 2.96), respect to the anti-cancer agent etoposide used as reference (IS: 0.57; 0.14)
Preparation of Novel Homodimers Derived from Cytotoxic Isoquinolinequinones. A Twin Drug Approach
The synthesis of five novel homodimers is reported based on the anilinoisoquinolinequinone scaffold. In these twin-drug derivatives, two units of the anilinoquinone pharmacophores are linked through a methylene spacer. The formation of dimers was achieved by reaction of isoquinolinequinones with 4, 4’-diaminodiphenylmethane via a sequence of two oxidative amination reactions. A preliminary in vitro screening of the homodimers reveals moderate to high cytotoxic activities against MDA-MB-21 breast adenocarcinoma and B16-F10 murine metastatic melanoma cell lines. The asymmetrical homodimer 15 stands out due to its cytotoxic potencies at submicromolar concentrations and high selectivity index (mean IC50 = 0.37 μM; SI = 6.97) compared to those of etoposide (mean IC50 = 3.67; SI = 0.32) and taxol (mean IC50 = 0.35; SI = 0.91) employed as reference anticancer drugs
Antiproliferative activity of new 6-bromine derivatives of 7-anilino-1-arylisoquinolinequinones
A variety of 6-bromine-containing 7-anilino-1-arylisoquinolinequinones 2a-g were synthesized to evaluate their half-wave potentials and in vitro antiproliferative activity on gastric and leukemia cancer cell lines. The new compounds displayed significant IC50 values in the range: 1.31 to 11.04 μM. The structure activity relationship analysis of the new series suggest that the antiproliferative activity is dependent, in part, on the push-pull electronic effects of the nitrogen and bromine substituents inserted into the redox fragment of the 1-arylisoquinolinequinone scaffold. Linear regression analysis provided satisfactory relationships between the log IC50 and ClogP values for the AGS gastric cancer cell line
Green Synthesis and Electrochemical Properties of Mono- and Dimers Derived from Phenylaminoisoquinolinequinones
In the search for new quinoid compounds endowed with potential anticancer activity, the synthesis of novel heterodimers containing the cytotoxic 7-phenylaminoisoquinolinequinone and 2-phenylaminonaphthoquinone pharmacophores, connected through methylene and ethylene spacers, is reported. The heterodimers were prepared from their respective isoquinoline and naphthoquinones and 4,4′-diaminodiphenyl alkenes. The access to the target heterodimers and their corresponding monomers was performed both through oxidative amination reactions assisted by ultrasound and CeCl3·7H2O catalysis “in water”. This eco-friendly procedure was successfully extended to the one-pot synthesis of homodimers derived from the 7-phenylaminoisoquinolinequinone pharmacophore. The electrochemical properties of the monomers and dimers were determined by cyclic and square wave voltammetry. The number of electrons transferred during the oxidation process, associated to the redox potential EI1/2, was determined by controlled potential coulometry
Synthesis, Half-Wave Potentials and Antiproliferative Activity of 1-Aryl-substituted Aminoisoquinolinequinones
The synthesis of a variety of 1-aryl-7-phenylaminoisoquinolinequinones from 1,4-benzoquinone and arylaldehydes via the respective 1-arylisoquinolinequinones is reported. The cyclic voltammograms of the new compounds exhibit two one-electron reduction waves to the corresponding radical-anion and dianion and two quasi-reversible oxidation peaks. The half-wave potential values (EI½) of the members of the series have proven sensitive to the electron-donor effect of the aryl group (phenyl, 2-thienyl, 2-furyl) at the 1-position as well as to the phenylamino groups (anilino, p-anisidino) at the 7-position. The antiproliferative activity of the new compounds was evaluated in vitro using the MTT colorimetric method against one normal cell line (MRC-5 lung fibroblasts) and two human cancer cell lines: AGS human gastric adenocarcinoma and HL-60 human promyelocytic leukemia cells in 72-h drug exposure assays. Among the series, compounds 5a, 5b, 5g, 5h, 6a and 6d exhibited interesting antiproliferative activities against human gastric adenocarcinoma. The 1-arylisoquinolinequinone 6a was found to be the most promising active compound against the tested cancer cell lines in terms of IC50 values (1.19; 1.24 µM) and selectivity index (IS: 3.08; 2.96), respect to the anti-cancer agent etoposide used as reference (IS: 0.57; 0.14)