3,432 research outputs found

    Solutions to the complex Korteweg-de Vries equation: Blow-up solutions and non-singular solutions

    Full text link
    In the paper two kinds of solutions are derived for the complex Korteweg-de Vries equation, including blow-up solutions and non-singular solutions. We derive blow-up solutions from known 1-soliton solution and a double-pole solution. There is a complex Miura transformation between the complex Korteweg-de Vries equation and a modified Korteweg-de Vries equation. Using the transformation, solitons, breathers and rational solutions to the complex Korteweg-de Vries equation are obtained from those of the modified Korteweg-de Vries equation. Dynamics of the obtained solutions are illustrated.Comment: 12 figure

    A DUAL-PETROV-GALERKIN METHOD FOR TWO INTEGRABLE FIFTH-ORDER KDV TYPE EQUATIONS

    Get PDF
    Abstract. This paper extends the dual-Petrov-Galerkin method proposed by Shen [21], further developed by Yuan, Shen and Wu [27] to general fifth-order KdV type equations with various nonlinear terms. These fifth-order equations arise in modeling different wave phenomena. The method is implemented to compute the multi-soliton solutions of two representative fifth-order KdV equations: the Kaup-Kupershmidt equation and the Caudry-Dodd-Gibbon equation. The numerical results imply that this scheme is capable of capturing, with very high accuracy, the details of these solutions such as the nonlinear interactions of multi-solitons. 1. Introduction. Numerical simulation is an indispensable tool in the study of many nonlinear dispersive partial differential equations. In [21] Shen proposed the dual-Petrov-Galerkin method for the third and higher odd-order equations such as the KdV and higher-order KdV type equations. This is a spectral Galerkin method with innovative choices of test and trial function spaces. Numerical tests performed on soliton solutions of the KdV equation indicate that the dual-PetrovGalerkin method is very efficient and accurat

    Discriminating different scenarios to account for the cosmic e±e^\pm excess by synchrotron and inverse Compton radiation

    Full text link
    The excesses of the cosmic positron fraction recently measured by PAMELA and the electron spectra by ATIC, PPB-BETS, Fermi and H.E.S.S. indicate the existence of primary electron and positron sources. The possible explanations include dark matter annihilation, decay, and astrophysical origin, like pulsars. In this work we show that these three scenarios can all explain the experimental results of the cosmic e±e^\pm excess. However, it may be difficult to discriminate these different scenarios by the local measurements of electrons and positrons. We propose possible discriminations among these scenarios through the synchrotron and inverse Compton radiation of the primary electrons/positrons from the region close to the Galactic center. Taking typical configurations, we find the three scenarios predict quite different spectra and skymaps of the synchrotron and inverse Compton radiation, though there are relatively large uncertainties. The most prominent differences come from the energy band 10410910^4\sim 10^9 MHz for synchrotron emission and 10\gtrsim 10 GeV for inverse Compton emission. It might be able to discriminate at least the annihilating dark matter scenario from the other two given the high precision synchrotron and diffuse γ\gamma-ray skymaps in the future.Comment: published in Pr

    Multi-Name Credit Derivatives

    Get PDF
    The problem addressed in this report is that of pricing multi-name credit derivatives. These are default guarantee contracts on a basket of “names” whose default rates are correlated

    Galactic Disk Bulk Motions as Revealed by the LSS-GAC DR2

    Full text link
    We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to \sim 2 kpc, a local subset of the global sample consisting \sim 5,400 stars within 150 pc, and an anti-center sample containing \sim 4,400 AFGK dwarfs and red clump stars within windows of a few degree wide centered on the Galactic anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to \sim 2 kpc with a spatial resolution of \sim 250 pc. Typical values of the radial and vertical components of bulk motion range from -15 km s1^{-1} to 15 km s1^{-1}, while the lag behind the circular speed dominates the azimuthal component by up to \sim 15 km s1^{-1}. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens km s1^{-1}. Bending- and breathing-mode perturbations are clearly visible, and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars of different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. (2012) at Galactocentric radii 10--11 kpc is confirmed. However, just beyond this distance, our data also reveal a new triple-peaked structure.Comment: 27 pages, 17 figures, Accepted for publication in a special issue of Research in Astronomy and Astrophysics on LAMOST science
    corecore