22 research outputs found

    In Silico Screening of Natural Products Isolated from Mexican Herbal Medicines against COVID-19

    No full text
    The COVID-19 pandemic has already taken the lives of more than 2 million people worldwide, causing several political and socio-economic disturbances in our daily life. At the time of publication, there are non-effective pharmacological treatments, and vaccine distribution represents an important challenge for all countries. In this sense, research for novel molecules becomes essential to develop treatments against the SARS-CoV-2 virus. In this context, Mexican natural products have proven to be quite useful for drug development; therefore, in the present study, we perform an in silico screening of 100 compounds isolated from the most commonly used Mexican plants, against the SARS-CoV-2 virus. As results, we identify ten compounds that meet leadlikeness criteria (emodin anthrone, kaempferol, quercetin, aesculin, cichoriin, luteolin, matricin, riolozatrione, monocaffeoyl tartaric acid, aucubin). According to the docking analysis, only three compounds target the key proteins of SARS-CoV-2 (quercetin, riolozatrione and cichoriin), but only one appears to be safe (cichoriin). ADME (absorption, distribution, metabolism and excretion) properties and the physiologically based pharmacokinetic (PBPK) model show that cichoriin reaches higher lung levels (100 mg/Kg, IV); therefore, it may be considered in developing therapeutic tools

    Macrophage Migration Inhibitory Factor -173 G/C Polymorphism: A Global Meta-Analysis across the Disease Spectrum

    No full text
    Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58–0.93], P < 0.01; OR: 0.81 [0.74–0.89], P < 0.0001; and OR: 0.81 [0.76–0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57–0.095], P < 0.01; OR: 0.66 [0.48–0.92], P < 0.0154; and OR: 0.70 [0.60–0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69–0.84], P < 0.0001; OR: 0.77 [0.72–0.83], P < 0.0001; OR: 0.61 [0.44–0.83], P-value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77–0.94], P < 0.0001; OR: 0.80 [0.75–0.86], P < 0.0001; OR: 0.73 [0.63–0.85], P-value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF-173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications

    Table2.XLSX

    No full text
    <p>Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58–0.93], P < 0.01; OR: 0.81 [0.74–0.89], P < 0.0001; and OR: 0.81 [0.76–0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57–0.095], P < 0.01; OR: 0.66 [0.48–0.92], P < 0.0154; and OR: 0.70 [0.60–0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69–0.84], P < 0.0001; OR: 0.77 [0.72–0.83], P < 0.0001; OR: 0.61 [0.44–0.83], P-value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77–0.94], P < 0.0001; OR: 0.80 [0.75–0.86], P < 0.0001; OR: 0.73 [0.63–0.85], P-value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF-173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications.</p

    Image5.tif

    No full text
    <p>Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58–0.93], P < 0.01; OR: 0.81 [0.74–0.89], P < 0.0001; and OR: 0.81 [0.76–0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57–0.095], P < 0.01; OR: 0.66 [0.48–0.92], P < 0.0154; and OR: 0.70 [0.60–0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69–0.84], P < 0.0001; OR: 0.77 [0.72–0.83], P < 0.0001; OR: 0.61 [0.44–0.83], P-value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77–0.94], P < 0.0001; OR: 0.80 [0.75–0.86], P < 0.0001; OR: 0.73 [0.63–0.85], P-value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF-173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications.</p

    Table1.xlsx

    No full text
    <p>Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58–0.93], P < 0.01; OR: 0.81 [0.74–0.89], P < 0.0001; and OR: 0.81 [0.76–0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57–0.095], P < 0.01; OR: 0.66 [0.48–0.92], P < 0.0154; and OR: 0.70 [0.60–0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69–0.84], P < 0.0001; OR: 0.77 [0.72–0.83], P < 0.0001; OR: 0.61 [0.44–0.83], P-value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77–0.94], P < 0.0001; OR: 0.80 [0.75–0.86], P < 0.0001; OR: 0.73 [0.63–0.85], P-value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF-173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications.</p

    Image4.tif

    No full text
    <p>Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58–0.93], P < 0.01; OR: 0.81 [0.74–0.89], P < 0.0001; and OR: 0.81 [0.76–0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57–0.095], P < 0.01; OR: 0.66 [0.48–0.92], P < 0.0154; and OR: 0.70 [0.60–0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69–0.84], P < 0.0001; OR: 0.77 [0.72–0.83], P < 0.0001; OR: 0.61 [0.44–0.83], P-value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77–0.94], P < 0.0001; OR: 0.80 [0.75–0.86], P < 0.0001; OR: 0.73 [0.63–0.85], P-value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF-173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications.</p

    Image3.tif

    No full text
    <p>Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58–0.93], P < 0.01; OR: 0.81 [0.74–0.89], P < 0.0001; and OR: 0.81 [0.76–0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57–0.095], P < 0.01; OR: 0.66 [0.48–0.92], P < 0.0154; and OR: 0.70 [0.60–0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69–0.84], P < 0.0001; OR: 0.77 [0.72–0.83], P < 0.0001; OR: 0.61 [0.44–0.83], P-value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77–0.94], P < 0.0001; OR: 0.80 [0.75–0.86], P < 0.0001; OR: 0.73 [0.63–0.85], P-value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF-173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications.</p

    Image6.tif

    No full text
    <p>Human macrophage migration inhibitory factor (MIF) is a cytokine that plays a role in several metabolic and inflammatory processes. Single nucleotide polymorphism (SNP) -173 G/C (rs755622) on MIF gene has been associated with numerous diseases, such as arthritis and cancer. However, most of the reports concerning the association of MIF with these and other pathologies are inconsistent and remain quite controversial. Therefore, we performed a meta-analysis from 96 case-control studies on -173 G/C MIF SNP and stratified the data according to the subjects geographic localization or the disease pathophysiology, in order to determine a more meaningful significance to this SNP. The polymorphism was strongly associated with an increased risk in autoimmune-inflammatory, infectious and age-related diseases on the dominant (OR: 0.74 [0.58–0.93], P < 0.01; OR: 0.81 [0.74–0.89], P < 0.0001; and OR: 0.81 [0.76–0.87], P < 0.0001, respectively) and the recessive models (OR: 0.74 [0.57–0.095], P < 0.01; OR: 0.66 [0.48–0.92], P < 0.0154; and OR: 0.70 [0.60–0.82], P < 0.0001, respectively). Also, significant association was found in the geographic localization setting for Asia, Europe and Latin America subdivisions in the dominant (OR: 0.76 [0.69–0.84], P < 0.0001; OR: 0.77 [0.72–0.83], P < 0.0001; OR: 0.61 [0.44–0.83], P-value: 0.0017, respectively) and overdominant models (OR: 0.85 [0.77–0.94], P < 0.0001; OR: 0.80 [0.75–0.86], P < 0.0001; OR: 0.73 [0.63–0.85], P-value: 0.0017, respectively). Afterwards, we implemented a network meta-analysis to compare the association of the polymorphism for two different subdivisions. We found a stronger association for autoimmune than for age-related or autoimmune-inflammatory diseases, and stronger association for infectious than for autoimmune-inflammatory diseases. We report for the first time a meta-analysis of rs755622 polymorphism with a variety of stratified diseases and populations. The study reveals a strong association of the polymorphism with autoimmune and infectious diseases. These results may help direct future research on MIF-173 G/C in diseases in which the relation is clearer and thus assist the search for more plausible applications.</p

    Could Lower Testosterone in Older Men Explain Higher COVID-19 Morbidity and Mortalities?

    No full text
    The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection&rsquo;s outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations

    Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle

    No full text
    To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl−), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen’s intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen’s non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms
    corecore