3,042 research outputs found

    NeuralPower: Predict and Deploy Energy-Efficient Convolutional Neural Networks

    Full text link
    "How much energy is consumed for an inference made by a convolutional neural network (CNN)?" With the increased popularity of CNNs deployed on the wide-spectrum of platforms (from mobile devices to workstations), the answer to this question has drawn significant attention. From lengthening battery life of mobile devices to reducing the energy bill of a datacenter, it is important to understand the energy efficiency of CNNs during serving for making an inference, before actually training the model. In this work, we propose NeuralPower: a layer-wise predictive framework based on sparse polynomial regression, for predicting the serving energy consumption of a CNN deployed on any GPU platform. Given the architecture of a CNN, NeuralPower provides an accurate prediction and breakdown for power and runtime across all layers in the whole network, helping machine learners quickly identify the power, runtime, or energy bottlenecks. We also propose the "energy-precision ratio" (EPR) metric to guide machine learners in selecting an energy-efficient CNN architecture that better trades off the energy consumption and prediction accuracy. The experimental results show that the prediction accuracy of the proposed NeuralPower outperforms the best published model to date, yielding an improvement in accuracy of up to 68.5%. We also assess the accuracy of predictions at the network level, by predicting the runtime, power, and energy of state-of-the-art CNN architectures, achieving an average accuracy of 88.24% in runtime, 88.34% in power, and 97.21% in energy. We comprehensively corroborate the effectiveness of NeuralPower as a powerful framework for machine learners by testing it on different GPU platforms and Deep Learning software tools.Comment: Accepted as a conference paper at ACML 201

    DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures

    Full text link
    Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performances in applications such as image classification and language modeling. However, these techniques typically ignore device-related objectives such as inference time, memory usage, and power consumption. Optimizing neural architecture for device-related objectives is immensely crucial for deploying deep networks on portable devices with limited computing resources. We propose DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures, optimizing for both device-related (e.g., inference time and memory usage) and device-agnostic (e.g., accuracy and model size) objectives. DPP-Net employs a compact search space inspired by current state-of-the-art mobile CNNs, and further improves search efficiency by adopting progressive search (Liu et al. 2017). Experimental results on CIFAR-10 are poised to demonstrate the effectiveness of Pareto-optimal networks found by DPP-Net, for three different devices: (1) a workstation with Titan X GPU, (2) NVIDIA Jetson TX1 embedded system, and (3) mobile phone with ARM Cortex-A53. Compared to CondenseNet and NASNet (Mobile), DPP-Net achieves better performances: higher accuracy and shorter inference time on various devices. Additional experimental results show that models found by DPP-Net also achieve considerably-good performance on ImageNet as well.Comment: 13 pages 9 figures, ECCV 2018 Camera Read

    M3A: Model, MetaModel, and Anomaly Detection in Web Searches

    Full text link
    'Alice' is submitting one web search per five minutes, for three hours in a row - is it normal? How to detect abnormal search behaviors, among Alice and other users? Is there any distinct pattern in Alice's (or other users') search behavior? We studied what is probably the largest, publicly available, query log that contains more than 30 million queries from 0.6 million users. In this paper, we present a novel, user-and group-level framework, M3A: Model, MetaModel and Anomaly detection. For each user, we discover and explain a surprising, bi-modal pattern of the inter-arrival time (IAT) of landed queries (queries with user click-through). Specifically, the model Camel-Log is proposed to describe such an IAT distribution; we then notice the correlations among its parameters at the group level. Thus, we further propose the metamodel Meta-Click, to capture and explain the two-dimensional, heavy-tail distribution of the parameters. Combining Camel-Log and Meta-Click, the proposed M3A has the following strong points: (1) the accurate modeling of marginal IAT distribution, (2) quantitative interpretations, and (3) anomaly detection.Comment: 10 pages, 10 figures, 3 table

    COCO-GAN: Generation by Parts via Conditional Coordinating

    Full text link
    Humans can only interact with part of the surrounding environment due to biological restrictions. Therefore, we learn to reason the spatial relationships across a series of observations to piece together the surrounding environment. Inspired by such behavior and the fact that machines also have computational constraints, we propose \underline{CO}nditional \underline{CO}ordinate GAN (COCO-GAN) of which the generator generates images by parts based on their spatial coordinates as the condition. On the other hand, the discriminator learns to justify realism across multiple assembled patches by global coherence, local appearance, and edge-crossing continuity. Despite the full images are never generated during training, we show that COCO-GAN can produce \textbf{state-of-the-art-quality} full images during inference. We further demonstrate a variety of novel applications enabled by teaching the network to be aware of coordinates. First, we perform extrapolation to the learned coordinate manifold and generate off-the-boundary patches. Combining with the originally generated full image, COCO-GAN can produce images that are larger than training samples, which we called "beyond-boundary generation". We then showcase panorama generation within a cylindrical coordinate system that inherently preserves horizontally cyclic topology. On the computation side, COCO-GAN has a built-in divide-and-conquer paradigm that reduces memory requisition during training and inference, provides high-parallelism, and can generate parts of images on-demand.Comment: Accepted to ICCV'19 (oral). All images are compressed due to size limit, please access the full-resolution version via Google Drive: http://bit.ly/COCO-GAN-ful

    Graph Autoencoders with Deconvolutional Networks

    Full text link
    Recent studies have indicated that Graph Convolutional Networks (GCNs) act as a \emph{low pass} filter in spectral domain and encode smoothed node representations. In this paper, we consider their opposite, namely Graph Deconvolutional Networks (GDNs) that reconstruct graph signals from smoothed node representations. We motivate the design of Graph Deconvolutional Networks via a combination of inverse filters in spectral domain and de-noising layers in wavelet domain, as the inverse operation results in a \emph{high pass} filter and may amplify the noise. Based on the proposed GDN, we further propose a graph autoencoder framework that first encodes smoothed graph representations with GCN and then decodes accurate graph signals with GDN. We demonstrate the effectiveness of the proposed method on several tasks including unsupervised graph-level representation , social recommendation and graph generatio

    Improving Adversarial Robustness via Guided Complement Entropy

    Full text link
    Adversarial robustness has emerged as an important topic in deep learning as carefully crafted attack samples can significantly disturb the performance of a model. Many recent methods have proposed to improve adversarial robustness by utilizing adversarial training or model distillation, which adds additional procedures to model training. In this paper, we propose a new training paradigm called Guided Complement Entropy (GCE) that is capable of achieving "adversarial defense for free," which involves no additional procedures in the process of improving adversarial robustness. In addition to maximizing model probabilities on the ground-truth class like cross-entropy, we neutralize its probabilities on the incorrect classes along with a "guided" term to balance between these two terms. We show in the experiments that our method achieves better model robustness with even better performance compared to the commonly used cross-entropy training objective. We also show that our method can be used orthogonal to adversarial training across well-known methods with noticeable robustness gain. To the best of our knowledge, our approach is the first one that improves model robustness without compromising performance.Comment: ICCV'19 Camera Read

    HyperGrid: Efficient Multi-Task Transformers with Grid-wise Decomposable Hyper Projections

    Full text link
    Achieving state-of-the-art performance on natural language understanding tasks typically relies on fine-tuning a fresh model for every task. Consequently, this approach leads to a higher overall parameter cost, along with higher technical maintenance for serving multiple models. Learning a single multi-task model that is able to do well for all the tasks has been a challenging and yet attractive proposition. In this paper, we propose \textsc{HyperGrid}, a new approach for highly effective multi-task learning. The proposed approach is based on a decomposable hypernetwork that learns grid-wise projections that help to specialize regions in weight matrices for different tasks. In order to construct the proposed hypernetwork, our method learns the interactions and composition between a global (task-agnostic) state and a local task-specific state. We apply our proposed \textsc{HyperGrid} on the current state-of-the-art T5 model, demonstrating strong performance across the GLUE and SuperGLUE benchmarks when using only a single multi-task model. Our method helps bridge the gap between fine-tuning and multi-task learning approaches

    Sparse Sinkhorn Attention

    Full text link
    We propose Sparse Sinkhorn Attention, a new efficient and sparse method for learning to attend. Our method is based on differentiable sorting of internal representations. Concretely, we introduce a meta sorting network that learns to generate latent permutations over sequences. Given sorted sequences, we are then able to compute quasi-global attention with only local windows, improving the memory efficiency of the attention module. To this end, we propose new algorithmic innovations such as Causal Sinkhorn Balancing and SortCut, a dynamic sequence truncation method for tailoring Sinkhorn Attention for encoding and/or decoding purposes. Via extensive experiments on algorithmic seq2seq sorting, language modeling, pixel-wise image generation, document classification and natural language inference, we demonstrate that our memory efficient Sinkhorn Attention method is competitive with vanilla attention and consistently outperforms recently proposed efficient Transformer models such as Sparse Transformers

    Complement Objective Training

    Full text link
    Learning with a primary objective, such as softmax cross entropy for classification and sequence generation, has been the norm for training deep neural networks for years. Although being a widely-adopted approach, using cross entropy as the primary objective exploits mostly the information from the ground-truth class for maximizing data likelihood, and largely ignores information from the complement (incorrect) classes. We argue that, in addition to the primary objective, training also using a complement objective that leverages information from the complement classes can be effective in improving model performance. This motivates us to study a new training paradigm that maximizes the likelihood of the groundtruth class while neutralizing the probabilities of the complement classes. We conduct extensive experiments on multiple tasks ranging from computer vision to natural language understanding. The experimental results confirm that, compared to the conventional training with just one primary objective, training also with the complement objective further improves the performance of the state-of-the-art models across all tasks. In addition to the accuracy improvement, we also show that models trained with both primary and complement objectives are more robust to single-step adversarial attacks.Comment: ICLR'19 Camera Read

    Adversarial Robustness Across Representation Spaces

    Full text link
    Adversarial robustness corresponds to the susceptibility of deep neural networks to imperceptible perturbations made at test time. In the context of image tasks, many algorithms have been proposed to make neural networks robust to adversarial perturbations made to the input pixels. These perturbations are typically measured in an â„“p\ell_p norm. However, robustness often holds only for the specific attack used for training. In this work we extend the above setting to consider the problem of training of deep neural networks that can be made simultaneously robust to perturbations applied in multiple natural representation spaces. For the case of image data, examples include the standard pixel representation as well as the representation in the discrete cosine transform~(DCT) basis. We design a theoretically sound algorithm with formal guarantees for the above problem. Furthermore, our guarantees also hold when the goal is to require robustness with respect to multiple â„“p\ell_p norm based attacks. We then derive an efficient practical implementation and demonstrate the effectiveness of our approach on standard datasets for image classification
    • …
    corecore