9,464 research outputs found
Holographic R\'enyi entropy in AdS/LCFT correspondence
The recent study in AdS/CFT correspondence shows that the tree level
contribution and 1-loop correction of holographic R\'enyi entanglement entropy
(HRE) exactly match the direct CFT computation in the large central charge
limit. This allows the R\'enyi entanglement entropy to be a new window to study
the AdS/CFT correspondence. In this paper we generalize the study of R\'enyi
entanglement entropy in pure AdS gravity to the massive gravity theories at
the critical points. For the cosmological topological massive gravity (CTMG),
the dual conformal field theory (CFT) could be a chiral conformal field theory
or a logarithmic conformal field theory (LCFT), depending on the asymptotic
boundary conditions imposed. In both cases, by studying the short interval
expansion of the R\'enyi entanglement entropy of two disjoint intervals with
small cross ratio , we find that the classical and 1-loop HRE are in exact
match with the CFT results, up to order . To this order, the difference
between the massless graviton and logarithmic mode can be seen clearly.
Moreover, for the cosmological new massive gravity (CNMG) at critical point,
which could be dual to a logarithmic CFT as well, we find the similar agreement
in the CNMG/LCFT correspondence. Furthermore we read the 2-loop correction of
graviton and logarithmic mode to HRE from CFT computation. It has distinct
feature from the one in pure AdS gravity.Comment: 28 pages. Typos corrected, published versio
Mandarin Singing Voice Synthesis Based on Harmonic Plus Noise Model and Singing Expression Analysis
The purpose of this study is to investigate how humans interpret musical
scores expressively, and then design machines that sing like humans. We
consider six factors that have a strong influence on the expression of human
singing. The factors are related to the acoustic, phonetic, and musical
features of a real singing signal. Given real singing voices recorded following
the MIDI scores and lyrics, our analysis module can extract the expression
parameters from the real singing signals semi-automatically. The expression
parameters are used to control the singing voice synthesis (SVS) system for
Mandarin Chinese, which is based on the harmonic plus noise model (HNM). The
results of perceptual experiments show that integrating the expression factors
into the SVS system yields a notable improvement in perceptual naturalness,
clearness, and expressiveness. By one-to-one mapping of the real singing signal
and expression controls to the synthesizer, our SVS system can simulate the
interpretation of a real singer with the timbre of a speaker.Comment: 8 pages, technical repor
Robust Low-Rank Subspace Segmentation with Semidefinite Guarantees
Recently there is a line of research work proposing to employ Spectral
Clustering (SC) to segment (group){Throughout the paper, we use segmentation,
clustering, and grouping, and their verb forms, interchangeably.}
high-dimensional structural data such as those (approximately) lying on
subspaces {We follow {liu2010robust} and use the term "subspace" to denote both
linear subspaces and affine subspaces. There is a trivial conversion between
linear subspaces and affine subspaces as mentioned therein.} or low-dimensional
manifolds. By learning the affinity matrix in the form of sparse
reconstruction, techniques proposed in this vein often considerably boost the
performance in subspace settings where traditional SC can fail. Despite the
success, there are fundamental problems that have been left unsolved: the
spectrum property of the learned affinity matrix cannot be gauged in advance,
and there is often one ugly symmetrization step that post-processes the
affinity for SC input. Hence we advocate to enforce the symmetric positive
semidefinite constraint explicitly during learning (Low-Rank Representation
with Positive SemiDefinite constraint, or LRR-PSD), and show that factually it
can be solved in an exquisite scheme efficiently instead of general-purpose SDP
solvers that usually scale up poorly. We provide rigorous mathematical
derivations to show that, in its canonical form, LRR-PSD is equivalent to the
recently proposed Low-Rank Representation (LRR) scheme {liu2010robust}, and
hence offer theoretic and practical insights to both LRR-PSD and LRR, inviting
future research. As per the computational cost, our proposal is at most
comparable to that of LRR, if not less. We validate our theoretic analysis and
optimization scheme by experiments on both synthetic and real data sets.Comment: 10 pages, 4 figures. Accepted by ICDM Workshop on Optimization Based
Methods for Emerging Data Mining Problems (OEDM), 2010. Main proof simplified
and typos corrected. Experimental data slightly adde
Robust Recovery of Subspace Structures by Low-Rank Representation
In this work we address the subspace recovery problem. Given a set of data
samples (vectors) approximately drawn from a union of multiple subspaces, our
goal is to segment the samples into their respective subspaces and correct the
possible errors as well. To this end, we propose a novel method termed Low-Rank
Representation (LRR), which seeks the lowest-rank representation among all the
candidates that can represent the data samples as linear combinations of the
bases in a given dictionary. It is shown that LRR well solves the subspace
recovery problem: when the data is clean, we prove that LRR exactly captures
the true subspace structures; for the data contaminated by outliers, we prove
that under certain conditions LRR can exactly recover the row space of the
original data and detect the outlier as well; for the data corrupted by
arbitrary errors, LRR can also approximately recover the row space with
theoretical guarantees. Since the subspace membership is provably determined by
the row space, these further imply that LRR can perform robust subspace
segmentation and error correction, in an efficient way.Comment: IEEE Trans. Pattern Analysis and Machine Intelligenc
- …