9,464 research outputs found

    Holographic R\'enyi entropy in AdS3_3/LCFT2_2 correspondence

    Get PDF
    The recent study in AdS3_3/CFT2_2 correspondence shows that the tree level contribution and 1-loop correction of holographic R\'enyi entanglement entropy (HRE) exactly match the direct CFT computation in the large central charge limit. This allows the R\'enyi entanglement entropy to be a new window to study the AdS/CFT correspondence. In this paper we generalize the study of R\'enyi entanglement entropy in pure AdS3_3 gravity to the massive gravity theories at the critical points. For the cosmological topological massive gravity (CTMG), the dual conformal field theory (CFT) could be a chiral conformal field theory or a logarithmic conformal field theory (LCFT), depending on the asymptotic boundary conditions imposed. In both cases, by studying the short interval expansion of the R\'enyi entanglement entropy of two disjoint intervals with small cross ratio xx, we find that the classical and 1-loop HRE are in exact match with the CFT results, up to order x6x^6. To this order, the difference between the massless graviton and logarithmic mode can be seen clearly. Moreover, for the cosmological new massive gravity (CNMG) at critical point, which could be dual to a logarithmic CFT as well, we find the similar agreement in the CNMG/LCFT correspondence. Furthermore we read the 2-loop correction of graviton and logarithmic mode to HRE from CFT computation. It has distinct feature from the one in pure AdS3_3 gravity.Comment: 28 pages. Typos corrected, published versio

    Mandarin Singing Voice Synthesis Based on Harmonic Plus Noise Model and Singing Expression Analysis

    Full text link
    The purpose of this study is to investigate how humans interpret musical scores expressively, and then design machines that sing like humans. We consider six factors that have a strong influence on the expression of human singing. The factors are related to the acoustic, phonetic, and musical features of a real singing signal. Given real singing voices recorded following the MIDI scores and lyrics, our analysis module can extract the expression parameters from the real singing signals semi-automatically. The expression parameters are used to control the singing voice synthesis (SVS) system for Mandarin Chinese, which is based on the harmonic plus noise model (HNM). The results of perceptual experiments show that integrating the expression factors into the SVS system yields a notable improvement in perceptual naturalness, clearness, and expressiveness. By one-to-one mapping of the real singing signal and expression controls to the synthesizer, our SVS system can simulate the interpretation of a real singer with the timbre of a speaker.Comment: 8 pages, technical repor

    Robust Low-Rank Subspace Segmentation with Semidefinite Guarantees

    Full text link
    Recently there is a line of research work proposing to employ Spectral Clustering (SC) to segment (group){Throughout the paper, we use segmentation, clustering, and grouping, and their verb forms, interchangeably.} high-dimensional structural data such as those (approximately) lying on subspaces {We follow {liu2010robust} and use the term "subspace" to denote both linear subspaces and affine subspaces. There is a trivial conversion between linear subspaces and affine subspaces as mentioned therein.} or low-dimensional manifolds. By learning the affinity matrix in the form of sparse reconstruction, techniques proposed in this vein often considerably boost the performance in subspace settings where traditional SC can fail. Despite the success, there are fundamental problems that have been left unsolved: the spectrum property of the learned affinity matrix cannot be gauged in advance, and there is often one ugly symmetrization step that post-processes the affinity for SC input. Hence we advocate to enforce the symmetric positive semidefinite constraint explicitly during learning (Low-Rank Representation with Positive SemiDefinite constraint, or LRR-PSD), and show that factually it can be solved in an exquisite scheme efficiently instead of general-purpose SDP solvers that usually scale up poorly. We provide rigorous mathematical derivations to show that, in its canonical form, LRR-PSD is equivalent to the recently proposed Low-Rank Representation (LRR) scheme {liu2010robust}, and hence offer theoretic and practical insights to both LRR-PSD and LRR, inviting future research. As per the computational cost, our proposal is at most comparable to that of LRR, if not less. We validate our theoretic analysis and optimization scheme by experiments on both synthetic and real data sets.Comment: 10 pages, 4 figures. Accepted by ICDM Workshop on Optimization Based Methods for Emerging Data Mining Problems (OEDM), 2010. Main proof simplified and typos corrected. Experimental data slightly adde

    Robust Recovery of Subspace Structures by Low-Rank Representation

    Full text link
    In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed Low-Rank Representation (LRR), which seeks the lowest-rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.Comment: IEEE Trans. Pattern Analysis and Machine Intelligenc
    corecore