20 research outputs found

    Quantum Discord for Investigating Quantum Correlations without Entanglement in Solids

    Full text link
    Quantum systems unfold diversified correlations which have no classical counterparts. These quantum correlations have various different facets. Quantum entanglement, as the most well known measure of quantum correlations, plays essential roles in quantum information processing. However, it has recently been pointed out that quantum entanglement cannot describe all the nonclassicality in the correlations. Thus the study of quantum correlations in separable states attracts widely attentions. Herein, we experimentally investigate the quantum correlations of separable thermal states in terms of quantum discord. The sudden change of quantum discord is observed, which captures ambiguously the critical point associated with the behavior of Hamiltonian. Our results display the potential applications of quantum correlations in studying the fundamental properties of quantum system, such as quantum criticality of non-zero temperature.Comment: 4 pages, 4 figure

    Quantum games of asymmetric information

    Full text link
    We investigate quantum games in which the information is asymmetrically distributed among the players, and find the possibility of the quantum game outperforming its classical counterpart depends strongly on not only the entanglement, but also the informational asymmetry. What is more interesting, when the information distribution is asymmetric, the contradictive impact of the quantum entanglement on the profits is observed, which is not reported in quantum games of symmetric information.Comment: 5 pages, 3 figure
    corecore