235,546 research outputs found

    An overview of NASA research on positive displacement general-aviation engines

    Get PDF
    The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items

    Positive displacement type general-aviation engines: Summary and concluding remarks

    Get PDF
    The activities of programs investigating various aspects of aircraft internal combustion engines are briefly described including developments in fuel injection technology, cooling systems and drag reduction, turbocharger technology, and stratified-charge rotary engines

    Introduction to NASA contracts

    Get PDF
    The NASA Lewis Research Center issued requests for proposal to Avco Lycoming and Teledyne Continental Motors for a contractual effort to establish and demonstrate engine modifications to reduce exhaust emissions safely with minimum adverse effects on cost, weight, and fuel economy. The secondary objective was reducing fuel consumption

    High impact pressure regulator Patent

    Get PDF
    High impact pressure regulator having minimum number of lightweight movable element

    High impact pressure regulator withstands impacts of over 15,000 g

    Get PDF
    High impact pressure regulator used with a high impact gas scannograph withstands impacts of over 15,000 g. By the passage of fluid through the first and second chambers of the regulator, the pressure of the scannograph is regulated from a specific input valve to the desired output pressure valve

    Infusible silazane polymer and process for producing same

    Get PDF
    Coatings of high thermal and chemical stability for application to metal, glass, ceramics, and other surfaces are formed by reacting diphenyldichlorosilane in the presence of triethylamine with a nitrogen base selected from the group consisting of ammonia and methylamine. The pl polymeric, noncrystalline reaction product is heated in a reaction zone open to the atmosphere at a temperature ranging from approximately 250 C to 450 C until the infusible polymer is formed

    Experimental and analytical investigation of axisymmetric supersonic cruise nozzle geometry at Mach numbers from 0.60 to 1.30

    Get PDF
    Quantitative pressure and force data for five axisymmetric boattail nozzle configurations were examined. These configurations simulate the variable-geometry feature of a single nozzle design operating over a range of engine operating conditions. Five nozzles were tested in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.60 to 1.30. The experimental data were also compared with theoretical predictions
    corecore