80 research outputs found

    Interaction of Bupropion with Muscle-Type Nicotinic Acetylcholine Receptors in Different Conformational States

    Get PDF
    To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion: (a) inhibits epibatidine-induced Ca2+ influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with ~100-fold higher potency compared to that in the open state, (c) increases desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits [3H]TCP and [3H]imipramine binding to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/α-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy–driven process, and (f) interacts with a binding domain located between the serine (position 6’) and valine (position 13’) rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process.Fil: Arias, Hugo Rubén. Midwestern University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gumilar, Fernanda Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Rosenberg, Avraham. National Institutes of Health; Estados UnidosFil: Targowska Duda, Katarzyna M.. Medical University of Lublin; PoloniaFil: Feuerbach, Dominik. Novartis Institutes for Biomedical Research; SuizaFil: Jozwiak, Krzysztof. Medical University of Lublin; PoloniaFil: Moaddel, Ruin. National Institutes of Health; Estados UnidosFil: Wainer, Irving W.. National Institutes of Health; Estados UnidosFil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentin

    Design, stereoselective synthesis, configurational stability and biological activity of 7-chloro-9-(furan-3-yl)-2,3,3a,4-tetrahydro-1H-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine 5,5-dioxide

    Get PDF
    Chiral 5-arylbenzothiadiazine derivatives have recently attracted particular attention because they exhibit an interesting pharmacological activity as AMPA receptor (AMPAr) positive modulators. However, investigations on their configurational stability suggest a rapid enantiomerization in physiological conditions. In order to enhance configurational stability, preserving AMPAr activity, we have designed the novel compound (R,S)-7-chloro-9-(furan-3-yl)-2,3,3a,4-tetrahydro-1H-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine 5,5-dioxide bearing a pyrrolo moiety coupled with the 5-(furan-3-yl) substituent on benzothiadiazine core. A stereoselective synthesis was projected to obtain single enantiomer of the latter compound. Absolute configuration was assigned by X-ray crystal structure. Patch clamp experiments evaluating the activity of single enantiomers as AMPAr positive allosteric modulator showed that R stereoisomer is the active component. Molecular modeling studies were performed to explain biological results. An on-column stopped-flow bidimensional recycling HPLC procedure was applied to obtain on a large scale the active enantiomer with enantiomeric enrichment starting from the racemic mixture of the compound

    Design and Synthesis of Multi-Functional Ligands through Hantzsch Reaction: Targeting Ca2+ Channels, Activating Nrf2 and Possessing Cathepsin S Inhibitory, and Antioxidant Properties

    Get PDF
    This work relates to the design and synthesis of a series of novel multi-target directed ligands (MTDLs), i.e., compounds 4a–l, via a convenient one-pot three-component Hantzsch reaction. This approach targeted calcium channel antagonism, antioxidant capacity, cathepsin S inhibition, and interference with Nrf2 transcriptional activation. Of these MTDLs, 4i emerged as a promising compound, demonstrating robust antioxidant activity, the ability to activate Nrf2-ARE pathways, as well as calcium channel blockade and cathepsin S inhibition. Dihydropyridine 4i represents the first example of an MTDL that combines these biological activities.This work was supported by the Regional Council of Franche-Comté (2022Y-13659 and 13660 ACCURATE PROJECT).Peer reviewe

    Poly-saturated dolichols from filamentous fungi modulate activity of dolichol-dependent glycosyltransferase and physical properties of membranes

    Get PDF
    Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here, we confirm, using an LC-ESI-QTOF-MS analysis that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Also the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS

    Effects of Linkers and Substitutions on Multitarget Directed Ligands for Alzheimer’s Diseases: Emerging Paradigms and Strategies

    No full text
    Alzheimer’s disease (AD) is multifactorial, progressive and the most predominant cause of cognitive impairment and dementia worldwide. The current “one-drug, one-target” approach provides only symptomatic relief to the condition but is unable to cure the disease completely. The conventional single-target therapeutic approach might not always induce the desired effect due to the multifactorial nature of AD. Hence, multitarget strategies have been proposed to simultaneously knock out multiple targets involved in the development of AD. Herein, we provide an overview of the various strategies, followed by the multitarget-directed ligand (MTDL) development, rationale designs and efficient examples. Furthermore, the effects of the linkers and substitutional functional groups on MTDLs against various targets of AD and their modes of action are also discussed

    TAILORED USE OF ACETYLCHOLINESTERASE IMMOBILIZED REACTORS

    No full text
    Numerous targets in drug discovery are enzymes and several drugs elicit their pharmacological action through enzyme inhibition. Thus, new screening methodologies capable of identifying new enzyme inhibitors in a faster, more reproducible and automated way have been investigated over the last decades. In this context, chromatographic columns containing immobilized enzymes (IMERs - immobilized enzyme reactors) represent a new technological platform to rapidly screen enzyme inhibitors, alternative to in-solution bioassays. Enzyme immobilization offers advantages in terms of minimizing costs, increasing enzyme stability and data reproducibility. However, limitations are also present, e.g. unwanted interactions between screened compounds and the chromatographic support can affect the quality of data output. In this talk, different operative procedures involving an acetylcholinesterase (AChE)-based IMER will be presented. AChE is a well-known target enzyme in drug discovery for Alzheimer’s disease and AChE inhibitors constitute the largest class of compounds in the market for the symptomatic treatment of this pathology. The development of AChE-based monolithic IMERs, their combination with HPLC-UV and the design of experimental set-ups, which were tailored to overcome screening limitations and to enlarge retrievable information on the mechanisms of action, will be presented. In particular, different experimental set-up were optimized to make AChE-IMER providing (i) fast evaluation and ranking of different classes of compounds, independently from their interaction with the chromatographic support (ii) determination of inhibitory potency (IC50 values) and (ii) information regarding the mode of enzyme inhibition not only in terms of affinity (Ki value) but also in terms of kinetics (koff)
    • …
    corecore