2 research outputs found

    SWSPM: A Novel Alignment-Free DNA Comparison Method Based on Signal Processing Approaches

    No full text
    Computing similarity between 2 nucleotide sequences is one of the fundamental problems in bioinformatics. Current methods are based mainly on 2 major approaches: (1) sequence alignment, which is computationally expensive, and (2) faster, but less accurate, alignment-free methods based on various statistical summaries, for example, short word counts. We propose a new distance measure based on mathematical transforms from the domain of signal processing. To tolerate large-scale rearrangements in the sequences, the transform is computed across sliding windows. We compare our method on several data sets with current state-of-art alignment-free methods. Our method compares favorably in terms of accuracy and outperforms other methods in running time and memory requirements. In addition, it is massively scalable up to dozens of processing units without the loss of performance due to communication overhead. Source files and sample data are available at https://bitbucket.org/fiitstubioinfo/swspm/sr

    Systematic Genomic Surveillance of SARS-CoV-2 Virus on Illumina Sequencing Platforms in the Slovak Republic—One Year Experience

    No full text
    To explore a genomic pool of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the pandemic, the Ministry of Health of the Slovak Republic formed a genomics surveillance workgroup, and the Public Health Authority of the Slovak Republic launched a systematic national epidemiological surveillance using whole-genome sequencing (WGS). Six out of seven genomic centers implementing Illumina sequencing technology were involved in the national SARS-CoV-2 virus sequencing program. Here we analyze a total of 33,024 SARS-CoV-2 isolates collected from the Slovak population from 1 March 2021, to 31 March 2022, that were sequenced and analyzed in a consistent manner. Overall, 28,005 out of 30,793 successfully sequenced samples met the criteria to be deposited in the global GISAID database. During this period, we identified four variants of concern (VOC)—Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529). In detail, we observed 165 lineages in our dataset, with dominating Alpha, Delta and Omicron in three major consecutive incidence waves. This study aims to describe the results of a routine but high-level SARS-CoV-2 genomic surveillance program. Our study of SARS-CoV-2 genomes in collaboration with the Public Health Authority of the Slovak Republic also helped to inform the public about the epidemiological situation during the pandemic
    corecore