5 research outputs found
Antibacterial Activity of the Pyrogallol against <i>Staphylococcus aureus</i> Evaluated by Optical Image
The minimum inhibitory concentration (MIC) is used to define the lowest concentration at which a substance can inhibit bacterial growth. This study aimed to evaluate the MIC of pyrogallol against Staphylococcus aureus and to propose a method for building growth inhibition curves of bacterial strains from MIC assays. S. aureus strains 1199B (NorA) and 1199 (wild type) were used for the assays. Pyrogallol MIC tests were performed by the broth microdilution method. The proposed method uses RGB images of the microdilution plate using the R (Red), G (Green), and B (Blue) channels to extract information for the construction of the bacterial growth inhibition curve (GIC). Pyrogallol demonstrated a MIC of 512 µg/mL against the two S. aureus strains tested. The GIC was calculated and the MIC point of pyrogallol was identified against the tested strains. The proposed method suggested the same MIC point for pyrogallol when using microplate images before and after the addition of resazurin. Through this methodology, the subjectivity of visual analysis in MIC tests can be eliminated
Antibacterial Activity of the Pyrogallol against Staphylococcus aureus Evaluated by Optical Image
The minimum inhibitory concentration (MIC) is used to define the lowest concentration at which a substance can inhibit bacterial growth. This study aimed to evaluate the MIC of pyrogallol against Staphylococcus aureus and to propose a method for building growth inhibition curves of bacterial strains from MIC assays. S. aureus strains 1199B (NorA) and 1199 (wild type) were used for the assays. Pyrogallol MIC tests were performed by the broth microdilution method. The proposed method uses RGB images of the microdilution plate using the R (Red), G (Green), and B (Blue) channels to extract information for the construction of the bacterial growth inhibition curve (GIC). Pyrogallol demonstrated a MIC of 512 µg/mL against the two S. aureus strains tested. The GIC was calculated and the MIC point of pyrogallol was identified against the tested strains. The proposed method suggested the same MIC point for pyrogallol when using microplate images before and after the addition of resazurin. Through this methodology, the subjectivity of visual analysis in MIC tests can be eliminated
Antibacterial enhancement of antibiotic activity by Enterolobium contortisiliquum (Vell.) Morong
Objective: To identify the main chemical classes of compounds from aqueous extract of Enterolobium contortisiliquum (E. contortisiliquum) seed bark and to evaluate its antibacterial activity, as well as its potential to increase the activity of antibiotics against strains of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli.
Methods: Different classes of compounds in the aqueous extract of E. contortisiliquum were evaluated based on the visual changes in the coloration and the formation of precipitate after the addition of specific reagents. The antibacterial activity of the extract and its potential to increase of antibiotic activity of antibiotics drugs, gentamicin and norfloxacin was determined by using the microdilution method.
Results: Our results demonstrated that the following secondary metabolites were presented in E. contortisiliquum seed bark: flavones, flavonols, xanthones, flavononols, chalcones, aurones, flavones and catechins. The extract itself had very low antibacterial activity against all bacterial strains tested (MIC ≥ 1 024 μg/mL), but there was an increase in the antibiotic activity of gentamicin and norfloxacin when combined in the sub-inhibitory concentration (i.e., MIC/8).
Conclusions: Our data suggests that E. contortisiliquum seed bark may be an alternative source for new drugs with the potential to increase antibiotic activity against different strains of bacteria
Evaluation of the Antibacterial Activity and Efflux Pump Reversal of Thymol and Carvacrol against Staphylococcus aureus and Their Toxicity in Drosophila melanogaster
The antibacterial activity and efflux pump reversal of thymol and carvacrol were investigated against the Staphylococcus aureus IS-58 strain in this study, as well as their toxicity against Drosophila melanogaster. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method, while efflux pump inhibition was assessed by reduction of the antibiotic and ethidium bromide (EtBr) MICs. D. melanogaster toxicity was tested using the fumigation method. Both thymol and carvacrol presented antibacterial activities with MICs of 72 and 256 µg/mL, respectively. The association between thymol and tetracycline demonstrated synergism, while the association between carvacrol and tetracycline presented antagonism. The compound and EtBr combinations did not differ from controls. Thymol and carvacrol toxicity against D. melanogaster were evidenced with EC50 values of 17.96 and 16.97 µg/mL, respectively, with 48 h of exposure. In conclusion, the compounds presented promising antibacterial activity against the tested strain, although no efficacy was observed in terms of efflux pump inhibition