25 research outputs found

    Meiotic outcome in two carriers of Y autosome reciprocal translocations: selective elimination of certain segregants

    Get PDF
    BACKGROUND: Reciprocal Y autosome translocations are rare but frequently associated with male infertility. We report on the meiotic outcome in embryos fathered by two males with the karyotypes 46,X,t(Y;4)(q12;p15.32) and 46,X,t(Y;16)(q12;q13). The two couples underwent preimplantation genetic diagnosis (PGD) enabling determination of the segregation types that were compatible with fertilization and preimplantation embryo development. Both PGD and follow up analysis were carried out via fluorescence in situ hybridization (FISH) or array comparative genomic hybridization (aCGH) allowing the meiotic segregation types to be determined in a total of 27 embryos. RESULTS: Interestingly, it was seen that the number of female embryos resulting from alternate segregation with the chromosome combination of X and the autosome from the carrier gamete differed from the corresponding balanced males with derivative Y and the derivative autosome by a ratio of 7:1 in each case (P = 0.003) while from the adjacent-1 mode of segregation, the unbalanced male embryos with the combination of der Y and the autosome were seen in all embryos from couple A and in couple B with the exception of one embryo only that had the other chromosome combination of X and derivative autosome (P = 0.011). In both cases the deficit groups have in common the der autosome chromosome that includes the segment Yq12 to qter. CONCLUSION: The most likely explanation may be that this chromosome is associated with the X chromosome at PAR2 (pseudoautosomal region 2) in the sex-body leading to inactivation of genes on the autosomal segment that are required for the meiotic process and that this has led to degeneration of this class of spermatocytes during meiosis

    Human guanylate kinase (GUK1): cDNA sequence, expression and chromosomal localisation

    Get PDF
    AbstractGuanylate kinase (GK) catalyses the conversion of GMP to GTP as part of the cGMP cycle. In mammalian phototransduction, this cycle is essential for the regeneration of cGMP following its hydrolysis by phosphodiesterase. Mutations in different parts of this signalling cascade lead to retinal degeneration in humans. Protein studies have localized a locus for GK to a region of human chromosome 1 that also contains an autosomal recessive form of retinitis pigmentosa (RP12) and Usher's type 11a (USH2A). We report the sequence of this human GK (GUK1) and a further refinement of its localization to 1q32-41, placing it in the same interval as USH2A

    Male and female meiotic behaviour of an intrachromosomal insertion determined by preimplantation genetic diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two related family members, a female and a male balanced carrier of an intrachromosomal insertion on chromosome 7 were referred to our centre for preimplantation genetic diagnosis. This presented a rare opportunity to investigate the behaviour of the insertion chromosome during meiosis in two related carriers. The aim of this study was to carry out a detailed genetic analysis of the preimplantation embryos that were generated from the three treatment cycles for the male and two for the female carrier.</p> <p>Patients underwent <it>in vitro </it>fertilization and on day 3, 22 embryos from the female carrier and 19 embryos from the male carrier were biopsied and cells analysed by fluorescent in situ hybridization. Follow up analysis of 29 untransferred embryos was also performed for confirmation of the diagnosis and to obtain information on meiotic and mitotic outcome.</p> <p>Results</p> <p>In this study, the female carrier produced more than twice as many chromosomally balanced embryos as the male (76.5% vs. 36%), and two pregnancies were achieved for her. Follow up analysis showed that the male carrier had produced more highly abnormal embryos than the female (25% and 15% respectively) and no pregnancies occurred for the male carrier and his partner.</p> <p>Conclusion</p> <p>This study compares how an intrachromosomal insertion has behaved in the meiotic and preimplantation stages of development in sibling male and female carriers. It confirms that PGD is an appropriate treatment in such cases. Reasons for the differing outcome for the two carriers are discussed.</p
    corecore