86 research outputs found

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Post-traumatic stress and future substance use outcomes: leveraging antecedent factors to stratify risk

    Get PDF
    Background: Post-traumatic stress disorder (PTSD) and substance use (tobacco, alcohol, and cannabis) are highly comorbid. Many factors affect this relationship, including sociodemographic and psychosocial characteristics, other prior traumas, and physical health. However, few prior studies have investigated this prospectively, examining new substance use and the extent to which a wide range of factors may modify the relationship to PTSD. Methods: The Advancing Understanding of RecOvery afteR traumA (AURORA) study is a prospective cohort of adults presenting at emergency departments (N = 2,943). Participants self-reported PTSD symptoms and the frequency and quantity of tobacco, alcohol, and cannabis use at six total timepoints. We assessed the associations of PTSD and future substance use, lagged by one timepoint, using the Poisson generalized estimating equations. We also stratified by incident and prevalent substance use and generated causal forests to identify the most important effect modifiers of this relationship out of 128 potential variables. Results: At baseline, 37.3% (N = 1,099) of participants reported likely PTSD. PTSD was associated with tobacco frequency (incidence rate ratio (IRR): 1.003, 95% CI: 1.00, 1.01, p = 0.02) and quantity (IRR: 1.01, 95% CI: 1.001, 1.01, p = 0.01), and alcohol frequency (IRR: 1.002, 95% CI: 1.00, 1.004, p = 0.03) and quantity (IRR: 1.003, 95% CI: 1.001, 1.01, p = 0.001), but not with cannabis use. There were slight differences in incident compared to prevalent tobacco frequency and quantity of use; prevalent tobacco frequency and quantity were associated with PTSD symptoms, while incident tobacco frequency and quantity were not. Using causal forests, lifetime worst use of cigarettes, overall self-rated physical health, and prior childhood trauma were major moderators of the relationship between PTSD symptoms and the three substances investigated. Conclusion: PTSD symptoms were highly associated with tobacco and alcohol use, while the association with prospective cannabis use is not clear. Findings suggest that understanding the different risk stratification that occurs can aid in tailoring interventions to populations at greatest risk to best mitigate the comorbidity between PTSD symptoms and future substance use outcomes. We demonstrate that this is particularly salient for tobacco use and, to some extent, alcohol use, while cannabis is less likely to be impacted by PTSD symptoms across the strata

    Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium

    Get PDF
    Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization

    Full text link
    We combine resolvent-mode decomposition with techniques from convex optimization to optimally approximate velocity spectra in a turbulent channel. The velocity is expressed as a weighted sum of resolvent modes that are dynamically significant, non-empirical, and scalable with Reynolds number. To optimally represent DNS data at friction Reynolds number 2003, we determine the weights of resolvent modes as the solution of a convex optimization problem. Using only 12 modes per wall-parallel wavenumber pair and temporal frequency, we obtain close agreement with DNS-spectra, reducing the wall-normal and temporal resolutions used in the simulation by three orders of magnitude
    corecore