1,095 research outputs found

    Controlling the onset of turbulence by streamwise traveling waves. Part 2. Direct numerical simulations

    Full text link
    This work builds on and confirms the theoretical findings of Part 1 of this paper, Moarref & Jovanovi\'c (2010). We use direct numerical simulations of the Navier-Stokes equations to assess the efficacy of blowing and suction in the form of streamwise traveling waves for controlling the onset of turbulence in a channel flow. We highlight the effects of the modified base flow on the dynamics of velocity fluctuations and net power balance. Our simulations verify the theoretical predictions of Part 1 that the upstream traveling waves promote turbulence even when the uncontrolled flow stays laminar. On the other hand, the downstream traveling waves with parameters selected in Part 1 are capable of reducing the fluctuations' kinetic energy, thereby maintaining the laminar flow. In flows driven by a fixed pressure gradient, a positive net efficiency as large as 25 % relative to the uncontrolled turbulent flow can be achieved with downstream waves. Furthermore, we show that these waves can also relaminarize fully developed turbulent flows at low Reynolds numbers. We conclude that the theory developed in Part 1 for the linearized flow equations with uncertainty has considerable ability to predict full-scale phenomena.Comment: To appear in J. Fluid Mec

    Masses of constituent quarks confined in open bottom hadrons

    Full text link
    We apply color-spin and flavor-spin quark-quark interactions to the meson and baryon constituent quarks, and calculate constituent quark masses, as well as the coupling constants of these interactions. The main goal of this paper was to determine constituent quark masses from light and open bottom hadron masses, using the fitting method we have developed and clustering of hadron groups. We use color-spin Fermi-Breit (FB) and flavor-spin Glozman-Riska (GR) hyperfine interaction (HFI) to determine constituent quark masses (especially bb quark mass). Another aim was to discern between the FB and GR HFI because our previous findings had indicated that both interactions were satisfactory. Our improved fitting procedure of constituent quark masses showed that on average color-spin (Fermi-Breit) hyperfine interaction yields better fits. The method also shows the way how the constituent quark masses and the strength of the interaction constants appear in different hadron environments.Comment: 15 pages, 6 tables, 1 figure. Accepted for publication in Mod. Phys. Lett.
    corecore