54 research outputs found
Sensitivity studies for the cubic-kilometre deep-sea neutrino telescope KM3NeT
The observation of high-energy neutrinos from astrophysical sources would
substantially improve our knowledge and understanding of the non-thermal
processes in these sources, and would in particular pinpoint the accelerators
of cosmic rays. The sensitivity of different design options for a future
cubic-kilometre scale neutrino telescope in the Mediterranean Sea is
investigated for generic point sources and in particular for some of the
galactic objects from which TeV gamma emmission has recently been observed by
the H.E.S.S. atmospheric Cherenkov telescope. The effect of atmospheric
background on the source detection probabilities has been taken into account
through full simulation. The estimated event rates are compared to previous
results and limits from present neutrino telescopes.Comment: 4 pages, 1 figure, contribution of the 30th International Cosmic Ray
conferenc
Biallelic transcription of Igf2 and H19 in individual cells suggests a post-transcriptional contribution to genomic imprinting
AbstractThe H19 and insulin-like growth factor 2 (Igf2) genes in the mouse are models for genomic imprinting during development. The genes are located only 90 kb apart in the same transcriptional orientation [1], but are reciprocally imprinted: Igf2 is paternally expressed while H19 is maternally expressed. It has been suggested that expression of H19 and repression of Igf2 (or the converse) on a given chromosome are mechanistically linked and that the parental imprint operates at the level of transcription [2]. Although expression of Igf2 and H19 is thought to be monoallelic, the data have so far been obtained exclusively by looking at steady-state RNA levels using techniques that reflect the average activity of the genes in a cell population [3,4]. Here, we have adapted a fluorescent in situ hybridisation (FISH) method to detect nascent RNA molecules of Igf2 and H19 at the initial transcription sites in the nuclei of wild-type mouse embryonic liver cells. Nine different transcription patterns were observed, reflecting a high heterogeneity of transcription at the single-cell level. Our observations suggest that regulation of Igf2 and H19 by parental imprinting is much more complex than previously proposed and acts at both transcriptional and post-transcriptional levels
Worsening of obstructive sleep apnea associated with catheter-related superior vena cava syndrome
There is growing evidence that fluid accumulation in the neck contributes to the pathogenesis of obstructive sleep apnea (OSA). We describe a case of catheter-related superior vena cava (SVC) thrombosis revealed by rapid onset of typical symptoms of OSA. A marked improvement in OSA severity was observed after central venous catheter removal, anticoagulant therapy, and SVC angioplasty
High expression of gabarapl1 is associated with a better outcome for patients with lymph node-positive breast cancer
International audienceBACKGROUND: This study evaluates the relation of the early oestrogen-regulated gene gabarapl1 to cellular growth and its prognostic significance in breast adenocarcinoma. METHODS: First, the relation between GABARAPL1 expression and MCF-7 growth rate was analysed. Thereafter, by performing macroarray and reverse transcriptase quantitative-polymerase chain reaction (RT-qPCR) experiments, gabarapl1 expression was quantified in several histological breast tumour types and in a retrospective cohort of 265 breast cancers. RESULTS: GABARAPL1 overexpression inhibited MCF-7 growth rate and gabarapl1 expression was downregulated in breast tumours. Gabarapl1 mRNA levels were found to be significantly lower in tumours presenting a high histological grade, with a lymph node-positive (pN+) and oestrogen and/or progesterone receptor-negative status. In univariate analysis, high gabarapl1 levels were associated with a lower risk of metastasis in all patients (hazard ratio (HR) 4.96), as well as in pN+ patients (HR 14.96). In multivariate analysis, gabarapl1 expression remained significant in all patients (HR 3.63), as well as in pN+ patients (HR 5.65). In univariate or multivariate analysis, gabarapl1 expression did not disclose any difference in metastasis risk in lymph node-negative patients. CONCLUSIONS: Our data show for the first time that the level of gabarapl1 mRNA expression in breast tumours is a good indicator of the risk of recurrence, specifically in pN+ patients
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
Dark Matter Searches with the ANTARES Neutrino Telescope
[EN] The MOSCAB experiment (Materia OSCura A Bolle) uses the Geyser technique for dark matter search. The results of the first 0.5 kg mass prototype detector using superheated C3F8 liquid were very encouraging, achieving a 5 keV nuclear recoil threshold with high insensitivity to gamma radiation. Additionally, the technique seems to be easily scalable to higher masses for both in terms of complexity and costs, resulting in a very competitive technique for direct dark matter search, especially for the spin dependent case. Here, we report as well in the construction and commissioning of the big detector of 40 kg at the Milano-Bicocca University. The detector, the calibration tests and the evaluation of the background will be presented. Once demonstrated the functionality of the detector, it will be operated at the Gran Sasso National Laboratory in 2015.We acknowledge the financial support of the Spanish Ministerio de Ciencia e InnovaciĂłn (MICINN) and Ministerio de EconomĂa y Competitividad (MINECO), Grants FPA2012-37528-C02-02, and Consolider MultiDark CSD2009-00064, and of the Generalitat Valenciana, Grants ACOMP/2014/153 and PrometeoII/2014/079.Ardid RamĂrez, M. (2016). Dark Matter Searches with the ANTARES Neutrino Telescope. Nuclear and Particle Physics Proceedings. 273:378-382. https://doi.org/10.1016/j.nuclphysbps.2015.09.054S37838227
First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope
In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved
Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES
The data acquisition system for the ANTARES neutrino telescope
The ANTARES neutrino telescope is being constructed in the Mediterranean Sea.
It consists of a large three-dimensional array of photo-multiplier tubes. The
data acquisition system of the detector takes care of the digitisation of the
photo-multiplier tube signals, data transport, data filtering, and data
storage. The detector is operated using a control program interfaced with all
elements. The design and the implementation of the data acquisition system are
described.Comment: 20 pages, 6 figures, accepted for publication in Nucl. Instrum. Meth.
- …