756 research outputs found
Exploring the vs relation with flux transport dynamo models of solar-like stars
Aims: To understand stellar magnetism and to test the validity of the
Babcock-Leighton flux transport mean field dynamo models with stellar activity
observations Methods: 2-D mean field dynamo models at various rotation rates
are computed with the STELEM code to study the sensitivity of the activity
cycle period and butterfly diagram to parameter changes and are compared to
observational data. The novelty is that these 2-D mean field dynamo models
incorporate scaling laws deduced from 3-D hydrodynamical simulations for the
influence of rotation rate on the amplitude and profile of the meridional
circulation. These models make also use of observational scaling laws for the
variation of differential rotation with rotation rate. Results: We find that
Babcock-Leighton flux transport dynamo models are able to reproduce the change
in topology of the magnetic field (i.e. toward being more toroidal with
increasing rotation rate) but seem to have difficulty reproducing the cycle
period vs activity period correlation observed in solar-like stars if a
monolithic single cell meridional flow is assumed. It may however be possible
to recover the vs relation with more complex meridional
flows, if the profile changes in a particular assumed manner with rotation
rate. Conclusions: The Babcock-Leighton flux transport dynamo model based on
single cell meridional circulation does not reproduce the vs
relation unless the amplitude of the meridional circulation is
assumed to increase with rotation rate which seems to be in contradiction with
recent results obtained with 3-D global simulations.Comment: 12 pages, 8 figures, accepted for publication by A&A 1: AIM,
CEA/DSM-CNRS-Univ. Paris 7, IRFU/SAp, France, 2: D.A.M.T.P., Centre for
Mathematical Sciences, Univ. of Cambridge, UK, 3: JILA and Department of
Astrophysical and Planetary Sciences, Univ. of Colorado, US
Front-End Electronics of the ALICE dimuon trigger
This document presents the design and performance of the Front-End Electronics (FEE) developed for the ALICE dimuon trigger operating with Resistive Plate Chambers (RPCs) in streamer mode. This electronics, yet ready for production, is based on a dedicated ASIC designed at LPC Clermont-Fd
Behavior of unbound granular materials - Part I: isotropic case
International audienceThe paper discusses the modeling of the behavior of unbound granular materials. A representative approach that highlights some salient features of the behavior is proposed. This approach is essentially based on experimental results and the study is extended to the construction of the elastic potential from test results. to complete the analysis, two no-linear elastic models involving 3 parameters are proposed. In the construction of these models, two important aspects-the accuracy and the numerical stability-are analyzed
Behavior of unbound granular materials - Part I: isotropic case
International audienceThe paper discusses the modeling of the behavior of unbound granular materials. A representative approach that highlights some salient features of the behavior is proposed. This approach is essentially based on experimental results and the study is extended to the construction of the elastic potential from test results. to complete the analysis, two no-linear elastic models involving 3 parameters are proposed. In the construction of these models, two important aspects-the accuracy and the numerical stability-are analyzed
Production of sunspots and their effects on the corona and solar wind: Insights from a new 3D flux-transport dynamo model
We present a three-dimensional numerical model for the generation and
evolution of the magnetic field in the solar convection zone, in which sunspots
are produced and contribute to the cyclic reversal of the large-scale magnetic
field. We then assess the impact of this dynamo-generated field on the
structure of the solar corona and solar wind. This model solves the induction
equation in which the velocity field is prescribed. This velocity field is a
combination of a solar-like differential rotation and meridional circulation.
We develop an algorithm that enables the magnetic flux produced in the interior
to be buoyantly transported towards the surface to produce bipolar spots. We
find that those tilted bipolar magnetic regions contain a sufficient amount of
flux to periodically reverse the polar magnetic field and sustain dynamo
action. We then track the evolution of these magnetic features at the surface
during a few consecutive magnetic cycles and analyze their effects on the
topology of the corona and on properties of the solar wind (distribution of
streamers and coronal holes, and of slow and fast wind streams) in connection
with current observations of the Sun.Comment: 18 pages, 10 figure
Detection of ultra-weak magnetic fields in Am stars: beta UMa and theta Leo
An extremely weak circularly polarized signature was recently discovered in
spectral lines of the chemically peculiar Am star Sirius A. A weak surface
magnetic field was proposed to account for the observed polarized signal, but
the shape of the phase-averaged signature, dominated by a prominent positive
lobe, is not expected in the standard theory of the Zeeman effect. We aim at
verifying the presence of weak circularly polarized signatures in two other
bright Am stars, beta UMa and theta Leo, and investigating the physical origin
of Sirius-like polarized signals further. We present here a set of deep
spectropolarimetric observations of beta UMa and theta Leo, observed with the
NARVAL spectropolarimeter. We analyzed all spectra with the Least Squares
Deconvolution multiline procedure. To improve the signal-to-noise ratio and
detect extremely weak signatures in Stokes V profiles, we co-added all
available spectra of each star (around 150 observations each time). Finally, we
ran several tests to evaluate whether the detected signatures are consistent
with the behavior expected from the Zeeman effect. The line profiles of the two
stars display circularly polarized signatures similar in shape and amplitude to
the observations previously gathered for Sirius A. Our series of tests brings
further evidence of a magnetic origin of the recorded signal. These new
detections suggest that very weak magnetic fields may well be present in the
photospheres of a significant fraction of intermediate-mass stars. The strongly
asymmetric Zeeman signatures measured so far in Am stars (featuring a dominant
single-sign lobe) are not expected in the standard theory of the Zeeman effect
and may be linked to sharp vertical gradients in photospheric velocities and
magnetic field strengths
- …