43 research outputs found

    Higher spins on AdS3_{3} from the worldsheet

    Full text link
    It was recently shown that the CFT dual of string theory on AdS3×S3×T4{\rm AdS}_3 \times {\rm S}^3 \times T^4, the symmetric orbifold of T4T^4, contains a closed higher spin subsector. Via holography, this makes precise the sense in which tensionless string theory on this background contains a Vasiliev higher spin theory. In this paper we study this phenomenon directly from the worldsheet. Using the WZW description of the background with pure NS-NS flux, we identify the states that make up the leading Regge trajectory and show that they fit into the even spin N=4{\cal N}=4 Vasiliev higher spin theory. We also show that these higher spin states do not become massless, except for the somewhat singular case of level k=1k=1 where the theory contains a stringy tower of massless higher spin fields coming from the long string sector.Comment: 29+8 pages, 3 figure

    Observables and Microscopic Entropy of Higher Spin Black Holes

    Get PDF
    In the context of recently proposed holographic dualities between higher spin theories in AdS3 and 1+1-dimensional CFTs with W-symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical formalism based on three ingredients: a gauge-invariant definition of conserved charges and chemical potentials in the presence of higher spin black holes, a canonical definition of entropy in the bulk, and a bulk-to-boundary dictionary aligned with the asymptotic symmetry algebra. We show that our canonical formalism shares the same formal structure as the so-called holomorphic formalism, but differs in the definition of charges and chemical potentials and in the bulk-to-boundary dictionary. Most importantly, we show that it admits a consistent CFT interpretation. We discuss the spin-2 and spin-3 cases in detail and generalize our construction to theories based on the hs[\lambda] algebra, and on the sl(N,R) algebra for any choice of sl(2,R) embedding.Comment: 47 pages, references added, published versio

    Higher Spin Entanglement and W_N Conformal Blocks

    Get PDF
    Two-dimensional conformal field theories with extended W\cal{W}-symmetry algebras have dual descriptions in terms of weakly coupled higher spin gravity in AdS3 _3\, at large central charge. Observables that can be computed and compared in the two descriptions include R\'enyi and entanglement entropies, and correlation functions of local operators. We develop techniques for computing these, in a manner that sheds light on when and why one can expect agreement between such quantities on each side of the duality. We set up the computation of excited state R\'enyi entropies in the bulk in terms of Chern-Simons connections, and show how this directly parallels the CFT computation of correlation functions. More generally, we consider the vacuum conformal block for general operators with Δ∼c \Delta \sim c\,. When two of the operators obey Δc≪1 {\Delta \over c} \ll 1\,, we show by explicit computation that the vacuum conformal block is computed by a bulk Wilson line probing an asymptotically AdS3_3 background with higher spin fields excited, the latter emerging as the effective bulk description of the excited state produced by the heavy operators. Among other things, this puts a previous proposal for computing higher spin entanglement entropy via Wilson lines on firmer footing, and clarifies its relation to CFT. We also study the corresponding computation in Toda theory and find that this provides yet another independent way to arrive at the same result.Comment: 56 page

    Pion form factor in the Kroll-Lee-Zumino model

    Full text link
    The renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino is used to compute the one-loop vertex corrections to the tree-level, Vector Meson Dominance (VMD) pion form factor. These corrections, together with the known one-loop vacuum polarization contribution, lead to a substantial improvement over VMD. The resulting pion form factor in the space-like region is in excellent agreement with data in the whole range of accessible momentum transfers. The time-like form factor, known to reproduce the Gounaris-Sakurai formula at and near the rho-meson peak, is unaffected by the vertex correction at order O\cal{O}(g_\rpp^2).Comment: Revised version corrects a misprint in Eq.(1
    corecore