33 research outputs found
Alarm Pheromones and Chemical Communication in Nymphs of the Tropical Bed Bug Cimex hemipterus (Hemiptera: Cimicidae)
The recent resurge of bed bug infestations (Cimex spp.; Cimicidae) and their resistance to commonly used pesticides calls for alternative methods of control. Pheromones play an important role in environmentally sustainable methods for the management of many pest insects and may therefore be applicable for the control of bed bugs. The tropical bed bug, Cimex hemipterus, is a temporary ectoparasite on humans and causes severe discomfort. Compared to the common bed bug, Cimex lectularius, little is known about the chemical signalling and pheromone-based behaviour of the tropical species. Here, we show that the antennal morphology and volatile emission of C. hemipterus closely resembles those of C. lectularius and we test their behavioural responses to conspecific odour emissions. Two major volatiles are emitted by male, female and nymph C. hemipterus under stress, (E)-2-hexenal and (E)-2-octenal. Notably, nymph emissions show contrasting ratios of these compounds to adults and are further characterized by the addition of 4-oxo-(E)-2-hexenal and 4-oxo-(E)-2-octenal. The discovery of this nymph pheromone in C. hemipterus is potentially the cause of a repellent effect observed in the bio-tests, where nymph odours induce a significantly stronger repellent reaction in conspecifics than adult odours. Our results suggest that pheromone-based pest control methods developed for C. lectularius could be applicable to C. hemipterus, with the unique nymph blend showing promising practical properties
High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study
<p>Abstract</p> <p>Background</p> <p>To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI) and resultant systemic inflammatory responses.</p> <p>Methods</p> <p>Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV) with either a low tidal volume (Vt) of 6 mL/kg and 5 cm H<sub>2</sub>O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis) or with a high Vt of 15 mL/kg and no PEEP (HVt acid, HVt sepsis). Rats sacrificed immediately after acid instillation and non-ventilated septic animals served as controls. Hemodynamic and respiratory variables were monitored. After 4 h, lung wet to dry (W/D) weight ratios, histological lung injury and plasma mediator concentrations were measured.</p> <p>Results</p> <p>Oxygenation and lung compliance decreased after acid instillation as compared to sepsis. Additionally, W/D weight ratios and histological lung injury scores increased after acid instillation as compared to sepsis. MV increased W/D weight ratio and lung injury score, however this effect was mainly attributable to HVt ventilation after acid instillation. Similarly, effects of HVt on oxygenation were only observed after acid instillation. HVt during sepsis did not further affect oxygenation, compliance, W/D weight ratio or lung injury score. Plasma interleukin-6 and tumour necrosis factor-α concentrations were increased after acid instillation as compared to sepsis, but plasma intercellular adhesion molecule-1 concentration increased during sepsis only. In contrast to lung injury parameters, no additional effects of HVt MV after acid instillation on plasma mediator concentrations were observed.</p> <p>Conclusions</p> <p>During MV more severe lung injury develops after acid instillation as compared to sepsis. HVt causes VILI after acid instillation, but not during sepsis. However, this differential effect was not observed in the systemic release of mediators.</p
The Role of Anorexia in Resistance and Tolerance to Infections in Drosophila
Infections initiate a signaling loop in which sick animals become anorexic, and the resulting change in diet alters the body's ability to fight infections in good and bad ways
Does size matter for horny beetles? A geometric morphometric analysis of interspecific and intersexual size and shape variation in Colophon haughtoni Barnard, 1929, and C. kawaii Mizukami, 1997 (Coleoptera: Lucanidae)
Colophon is an understudied, rare and endangered stag beetle genus with all species endemic to isolated mountain peaks in South Africa’s Western Cape. Geometric morphometrics was used to analyse intersexual and interspecific variation of size and shape in the mandibles, heads, pronota and elytra of two sympatric species: Colophon haughtoni and Colophon kawaii. All measured structures showed significant sexual dimorphism, which may result from male-male competition for females. Female mandibles were too small and featureless for analysis, but male Colophon beetles possess large, ornate mandibles for fighting. Males had significantly larger heads and pronota that demonstrated shape changes which may relate to resource diversion to the mandibles and their supporting structures. Females are indistinguishable across species, but males were accurately identified using mandibles, heads and pronota. Male C. kawaii were significantly larger than C. haughtoni for all structures. These results support the species status of C. kawaii, which is currently in doubt due to its hybridisation with C. haughtoni. We also demonstrate the value of geometric morphometrics as a tool which may aid Colophon conservation by providing biological and phylogenetic insights and enabling species identification
Effect of Hydrochloric Acid (HCl) on Synthesis and Anisotropic Phenomena of Triglycine Phosphate (TGP) Single Crystals
International audienceEffect of Sulphuric acid (H2SO4) addition on the growth of triglycine phosphate (TGP) crystal has been studied from the aqueous solution by slow evaporation technique. The characteristics absorption bands of pure and H2SO4 admixtured TGP crystals are confirmed by FTIR spectra. UV-visible transmittance spectra were recorded for the samples to analyze the transparency of the grown crystals. The composition of pure and doped TGP crystals have been confirmed by EDAX analysis. The dielectric constants of the crystals have been studied and result suggests that the H2SO4 is doped into TGP crystal and that the doping increases its dielectric parameters. Introduction. Investigations on semiorganic nonlinear optical (NLO) materials gain importance because of good thermal and mechanical properties with large NLO coefficients [1,2]. Among the amino acids, glycine [amino acetic acid: NH2CH2COOH] is the simplest amino acid, hence,glycine mixed semi-organic material is a fundamental building block to grow many complex crystals with improved NLO properties. Reported literature shows that glycine sodiumnitrate [3], triglycine sulphate [4] etc. crystals exhibit of some glycine based compounds like triglycine zinc chloride [5], glycine sodium nitrate [6] and triglycine selenate [7] show non-linear effects ferroelectric properties and are used as infrared detectors, transducers and piezoelectric sensors due to the large difference between the inter-molecular and intra molecular chemical bonds [5–7]. One of the hydrogen bonded ferroelectric single crystal Glycine phosphate (GPI) undergoes a continuous ferroelectric–para electric phase transition at 224.7K [8]. Subsitutional or interstitial impurities in the host lattice leads to significant changes in the properties of the pure TGS crystals [9-10]. The pyroelectric coefficient of phosphoric acid doped TGS is more than that of pure TGS and observed phase transition temperature shift [11]. Inview of this, the present investigation has been focused on the growth of semi-organic Triglycine phosphate (TGP) single crystals doped with sulphuric acid at various concentrations (0.25,0.50,0.75 and 1.0 mol %) and this doping efforts on the growth aspects, structural perfection, phase transition temperature, and optical properties were studied by conducting various characterization techniques
MicroRNA pathways : an emerging role in identification of therapeutic strategies
For years researchers have exerted every effort to improve the influential roles of microRNA (miRNA) in regulating genes that direct mammalian cell development and function. In spite of numerous advancements, many facets of miRNA generation remain unresolved due to the perplexing regulatory networks. The biogenesis of miRNA, eminently endures as a mystery as no universal pathway defines or explicates the variegation in the rise of miRNAs. Early evidence in biogenesis ignited specific steps of being omitted or replaced that eventuate in the individual miRNAs of different mechanisms. Understanding the basic foundation concerning how miRNAs are generated and function will help with diagnostic tools and therapeutic strategies. This review encompasses the canonical and the non-canonical pathways involved in miRNA biogenesis, while elucidating how miRNAs regulate genes at the nuclear level and also the mechanism that lies behind circulating miRNAs
MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis
MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery