65 research outputs found
Recommended from our members
Advances in Ammonia Removal from Hot Coal Gas
Nitrogen occurs in coal in the form of tightly bound organic ring compounds, typically at levels of 1 to 2 wt%. During coal gasification, this fuel bound nitrogen is released principally as ammonia (NH{sub 3}). When hot coal gas is used to generate electricity in integrated gasification combined cycle (IGCC) power plants, NH{sub 3} is converted to nitrogen oxides (NO{sub x}) which are difficult to remove and are highly undesirable as atmospheric pollutants. Similarly, while the efficiency of integrated gasification molten carbonate fuel cell (IGFC) power plants is not affected by NH{sub 3}, NO{sub x} is generated during combustion of the anode exhaust gas. Thus NH{sub 3} must be removed from hot coal gas before it can be burned in a turbine or fuel cell. The objective of this study is to develop a successful combination of an NH{sub 3} decomposition catalyst with a zinc-based mixed-metal oxide sorbent so that the sorbent-catalyst activity remains stable for NH{sub 3} decomposition in addition to H{sub 2}S removal under cycle sulfidation-regeneration conditions in the temperature range of 500 to 750{degrees}C
Recommended from our members
Advanced Hot-Gas Desulfurization Sorbents
The objective of this project is to develop advanced hot-gas desulfurization sorbents for relatively low temperature application that show stable and high sulfidation reactivity at 343 to 538 {degrees}C. A number of zinc-based formulations will be prepared and screened for testing in a fixed-bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel gases. One of the superior formulations will be tested for long- term durability and chemical reactivity in the reactor. To prevent sulfation, catalyst additives will be investigated, which would promote a lower regeneration temperature
Recommended from our members
Scale-Up of Advanced Hot-Gas Desulfurization Sorbents
The overall objective of this project is to develop regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective of the project is to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high activity at temperatures as low as 343{degrees}C (650{degrees}F). A number of formulations will be prepared and screened in a 1/2-inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel-gases. Screening criteria will include, chemical reactivity, stability, and regenerability over the temperature range of 343{degrees}C to 650{degrees}C. After initial screening, at least 3 promising formulations will be tested for 25-30 cycles of absorption and regeneration. One of the superior formulations with the best cyclic performance will be selected for investigating scale up parameters. The scaled-up formulation will be tested for long term durability and chemical reactivity
Recommended from our members
Advanced Hot-Gas Desulfurization Sorbents
Integrated gasification combined cycle (IGCC) power systems are being advanced worldwide for generating electricity from coal due to their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. Hot gas cleanup offers the potential for higher plant thermal efficiencies and lower cost. A key subsystem of hot-gas cleanup is hot-gas desulfurization using regenerable sorbents. Sorbents based on zinc oxide are currently the leading candidates and are being developed for moving- and fluidized- bed reactor applications. Zinc oxide sorbents can effectively reduce the H{sub 2}S in coal gas to around 10 ppm levels and can be regenerated for multicycle operation. However, all current first-generation leading sorbents undergo significant loss of reactivity with cycling, as much as 50% or greater loss in only 25-50 cycles. Stability of the hot-gas desulfurization sorbent over 100`s of cycles is essential for improved IGCC economics over conventional power plants. This project aims to develop hot-gas cleanup sorbents for relatively lower temperature applications, 343 to 538{degrees}C with emphasis on the temperature range from 400 to 500{degrees}. Recent economic evaluations have indicated that the thermal efficiency of IGCC systems increases rapidly with the temperature of hot-gas cleanup up to 350{degrees}C and then very slowly as the temperature is increased further. This suggests that the temperature severity of the hot-gas cleanup devices can be reduced without significant loss of thermal efficiency. The objective of this study is to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343{degrees}C (650{degrees}F) to 538{degrees}C(1OOO{degrees}F) and regenerability at lower temperatures than leading first generation sorbents
Recommended from our members
Attrition Resistant Iron-Based Fischer-Tropsch Catalysts.
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO and H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity
Recommended from our members
Attrition Resistant Iron-Based Fischer-Tropsch Catalysts
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRS) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modem coal gasifiers. This is because in addition to reasonable F-T activity, the FT catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity
Nanoscale Anatomy of Iron-Silica Self-Organized Membranes: Implications for Prebiotic Chemistry
Iron-silica self-organized membranes, so-called chemical gardens, behave as fuel cells and catalyze the formation of amino/carboxylic acids and RNA nucleobases from organics that were available on early Earth. Despite their relevance for prebiotic chemistry, little is known about their structure and mineralogy at the nanoscale. Studied here are focused ion beam milled sections of iron-silica membranes, grown from synthetic and natural, alkaline, serpentinization-derived fluids thought to be widespread on early Earth. Electron microscopy shows they comprise amorphous silica and iron nanoparticles of large surface areas and inter/intraparticle porosities. Their construction resembles that of a heterogeneous catalyst, but they can also exhibit a bilayer structure. Surface-area measurements suggest that membranes grown from natural waters have even higher catalytic potential. Considering their geochemically plausible precipitation in the early hydrothermal systems where abiotic organics were produced, iron-silica membranes might have assisted the generation and organization of the first biologically relevant organics
Recommended from our members
Attrition resistant catalysts for slurry-phase Fischer-Tropsch process
The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process low H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance
Recommended from our members
Development of advanced hot-gas desulfurization processes
Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas The effort during the reporting period has been devoted to development of an advanced hot-gas process that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur directly using a sorbent containing a combination of zinc and iron oxides
- …