347 research outputs found
Hired, Not Retained, and Leaving Drained: Assembling Teacher Attrition Through Drama Theory and Theatre of the Oppressed in Nevada K-12 Schools
Teacher retention and attrition dominate the conversation with various stakeholders in the education field. Despite the continued attention, teacher attrition continues to be a significant issue nationally and in the state of Nevada specifically. This study analyzes this multi-faceted issue through the lens of Augusto Boal’s Theatre of the Oppressed and Jim Bryant’s Drama Theory to provide a holistic view of the educator’s experience and the possible factors leading to attrition. The study uses an original play to examine a fictional school to assess the personal factors that may lead these educators to consider leaving the profession. Then, this study analyzes the play using confrontation analysis (Bryant) and image theatre (Boal) to consider a path forward for stakeholders that are addressing the teacher attrition and retention issue. To this end, this study contends that the traditional means for recruiting and retaining educators unintentionally leads to depersonalization and isolation which are leading factors in educators leaving the field. As a result, Drama Theory and Theatre of the Oppressed features may lead to educator empowerment and a possible positive impact to the teacher attrition issue. Teacher turnover became a nationwide issue that demands attention by education professions, lawmakers, and other stakeholders. There are cases where teacher attrition has slowed and even some instances where teacher turnover is at a healthy rate. This project highlights the impact confrontation analysis (Drama Theory) and Theatre of the Oppressed (Boal) could have on the depersonalization and isolation many educators feel today which may lead to empowering stakeholders to collective action. Further, this project provides implementation strategies and a Boal exercises to help facilitate these important discussions
Magnetic anisotropy of individual maghemite mesocrystals
Interest in creating magnetic metamaterials has led to methods for growing superstructures of magnetic nanoparticles. Mesoscopic crystals of maghemite (gamma-Fe2O3) nanoparticles can be arranged into highly ordered body-centered tetragonal lattices of up to a few micrometers. Although measurements on disordered ensembles have been carried out, determining the magnetic properties of individual mesoscopic crystals is challenging due to their small total magnetic moment. Here, we overcome these challenges by utilizing sensitive dynamic cantilever magnetometry to study individual micrometer-sized gamma-Fe2O3 mesocrystals. These measurements reveal an unambiguous cubic anisotropy, resulting from the crystalline anisotropy of the constituent maghemite nanoparticles and their alignment within the mesoscopic lattice. The signatures of anisotropy and its origins come to light because we combine the self-assembly of highly ordered mesocrystals with the ability to resolve their individual magnetism. This combination is promising for future studies of the magnetic anisotropy of other nanoparticles, which are too small to investigate individually
Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays
We demonstrate the first chip-to-chip interconnect utilizing a densely integrated plasmonic Mach-Zehnder modulator array operating at 3 x 10 Gbit/s. A multicore fiber provides a compact optical interface, while the receiver consists of germanium photodetectors
Optical interconnect solution with plasmonic modulator and Ge photodetector array
We report on an optical chip-to-chip interconnect solution, thereby demonstrating plasmonics as a solution for ultra-dense, high-speed short-reach communications. The interconnect comprises a densely integrated plasmonic Mach-Zehnder modulator array that is packaged with standard driving electronics. On the receiver side, a germanium photodetector array is integrated with trans-impedance amplifiers. A multicore fiber provides a compact optical interface to the array. We demonstrate 4 × 20 Gb/s on-off keying signaling with direct detection.ISSN:1041-1135ISSN:1941-017
Recommended from our members
Dig-face monitoring during excavation of a radioactive plume at Mound Laboratory, Ohio
A dig-face monitoring system consists of onsite hardware for collecting information on changing chemical, radiological, and physical conditions in the subsurface soil during the hazardous site excavation. A prototype dig-face system was take to Mount Laboratory for a first trial. Mound Area 7 was the site of historical disposals of {sup 232}Th, {sup 227}Ac, and assorted debris. The system was used to monitor a deep excavation aimed at removing {sup 227}Ac-contaminated soils. Radiological, geophysical, and topographic sensors were used to scan across the excavation dig-face at four successive depths as soil was removed. A 3-D image of the contamination plumes was developed; the radiation sensor data indicated that only a small portion of the excavated soil volume was contaminated. The spatial information produced by the dig-face system was used to direct the excavation activities into the area containing the {sup 227}Ac and to evaluate options for handling the separate {sup 232}Th plume
Recommended from our members
Mapping of contamination at Savannah River Site FBWU by INEEL trolley
The Ford Building Waste Unit (FBWU) 643-11G is a Resource Conservation and Recovery Act/Comprehensive Environmental Response Compensation and Liability Act (RCRA/CERCLA) designated site at the Savannah River Site (SRS) in Aiken, South Carolina. Pre-Work Plan Characterization at the FBWU in May 1996 indicated that radiological contamination was present in surface and near surface soils and identified cesium-137, {sup 137}Cs, the unit specific contaminant, as being primarily in the top 15 cm of soil. The Idaho National Engineering and Environmental Laboratory (INEEL) sent the dig-face trolley system to SRS where it demonstrated its capability over a 6.1-m (20 ft.) x 9.6-m (30 ft.) area to rapidly map the contamination on-line with its large area plastic scintillation detector. Also, an extended-range (10 keV to 3 MeV) Ge detector was used at selected locations to identify and quantify the {sup 137}Cs contamination. The coordinate locations of each measurement acquired in either the scanning or fixed position mode was obtained with a survey system based on radial encoders. Topography measurements were also made during measurements to permit correction of field of view and activity concentrations for changes in the ground to detector distance
High speed plasmonic modulator array enabling dense optical interconnect solutions
Plasmonic modulators might pave the way for a new generation of compact low-power high-speed optoelectronic devices. We introduce an extremely compact transmitter based on plasmonic Mach-Zehnder modulators offering a capacity of 4 × 36 Gbit/s on a footprint that is only limited by the size of the high-speed contact pads. The transmitter array is contacted through a multicore fiber with a channel spacing of 50 μm
Computed tomographic assessment of lung weights in trauma patients with early posttraumatic lung dysfunction
Introduction: Quantitative computed tomography (qCT)-based assessment of total lung weight (M(lung)) has the potential to differentiate atelectasis from consolidation and could thus provide valuable information for managing trauma patients fulfilling commonly used criteria for acute lung injury (ALI). We hypothesized that qCT would identify atelectasis as a frequent mimic of early posttraumatic ALI. Methods: In this prospective observational study, M(lung) was calculated by qCT in 78 mechanically ventilated trauma patients fulfilling the ALI criteria at admission. A reference interval for M(lung) was derived from 74 trauma patients with morphologically and functionally normal lungs (reference). Results are given as medians with interquartile ranges. Results: The ratio of arterial partial pressure of oxygen to the fraction of inspired oxygen was 560 (506 to 616) mmHg in reference patients and 169 (95 to 240) mmHg in ALI patients. The median reference M(lung) value was 885 (771 to 973) g, and the reference interval for M(lung) was 584 to 1164 g, which matched that of previous reports. Despite the significantly greater median M(lung) value (1088 (862 to 1,342) g) in the ALI group, 46 (59%) ALI patients had M(lung) values within the reference interval and thus most likely had atelectasis. In only 17 patients (22%), Mlung was increased to the range previously reported for ALI patients and compatible with lung consolidation. Statistically significant differences between atelectasis and consolidation patients were found for age, Lung Injury Score, Glasgow Coma Scale score, total lung volume, mass of the nonaerated lung compartment, ventilator-free days and intensive care unit-free days. Conclusions: Atelectasis is a frequent cause of early posttraumatic lung dysfunction. Differentiation between atelectasis and consolidation from other causes of lung damage by using qCT may help to identify patients who could benefit from management strategies such as damage control surgery and lung-protective mechanical ventilation that focus on the prevention of pulmonary complications.Leipzig University Hospita
- …