5 research outputs found

    From urine to food and oxygen: effects of high and low NH4+:NO3- ratio on lettuce cultivated in a gas-tight hydroponic facility

    Get PDF
    In situ production of food, water and oxygen is essential for long-duration human space missions. Higher plants represent a key element in Bioregenerative Life Support Systems (BLSS), where crop cultivation can be based on water and nutrients recovered from waste and wastewater. Human urine exemplifies an important waste stream with potential to provide crops with nitrogen (N) and other nutrients. Dynamic waste composition and treatment processes may result in mineralized fractions with varying ammonium (NH4+) to nitrate (NO3-) ratios. In this study, lettuce was cultivated in the unique ESA MELiSSA Plant Characterization Unit, an advanced, gas-tight hydroponic research facility offering controlled environment and continuous monitoring of atmospheric gas composition. To evaluate biological and system effects of nutrient solution NH4+:NO3- ratio, two crop tests were run with different NH4+ to total N ratio (NH4+:N) and elevated concentrations of Na+ and Cl- in line with a urine recycling scenario. Plants cultivated at 0.5 mol·mol-1 NH4+:N (HiNH4+) achieved 50% lower shoot biomass compared to those cultivated at 0.1 mol·mol-1 NH4+:N (LoNH4+), accompanied by higher shoot dry weight content and lower harvest index. Analyses of projected leaf area over time indicated that the reduced biomass observed at harvest could be attributed to a lower specific growth rate during the close-to-exponential growth phase. The HiNH4+ crop produced 40% less O2 over the full cultivation period. However, normalization of the results indicated a marginal increase in O2 production per time and per projected leaf area for the HiNH4+ crop during the exponential growth phase, in line with a higher shoot chlorophyll content. Mineral analysis demonstrated that the biomass content of NH4+ and NO3- varied in line with the nutrient solution composition. The ratio of consumed NH4+ to consumed N was higher than the NH4+:N ratio of the nutrient solution for both crop tests, resulting in decreasing NH4+:N ratios in the nutrient solution over time. The results provide enhanced insight for design of waste processes and crop cultivation to optimize overall BLSS efficiency and hold valuable potential for improved resource utilization also in terrestrial food production systems

    Testing new concepts for crop cultivation in space : Effects of rooting volume and nitrogen availability

    Get PDF
    Long term human missions to the Moon and Mars, rely on life support systems for food production and regeneration of resources. In the EU H2020 TIME SCALE-project, an advanced life support system concept was developed to facilitate plant research and technology demonstration under different gravity conditions. Ground experiments assessed irrigation systems and effects of rooting- and nutrient solution volume. The maximal allowed volume for existing International Space Station research facilities (3.4 L) was able to support cultivation of two lettuce heads for at least 24 days. A smaller rooting volume (0.6 L) increased root biomass after 24 days, but induced a 5% reduction in total biomass at day 35. Regulating effects of nitrate supply on plant water fluxes in light and dark were also investigated. At low concentrations of nitrate in the nutrient solution, both transpiration and stomatal conductance increased rapidly with increasing nitrate concentration. During day-time this increase levelled off at high concentrations, while during nigh-time there was a distinct decline at supra optimal concentrations. Plants supplied with nitrate concentrations as low as 1.25 mM did not show visible signs of nutrient stress or growth reduction. These findings hold promise for both reducing the environmental impact of terrestrial horticulture and avoiding nutrient stress in small scale closed cultivation systems for space.</p

    The Utilization of Plant Facilities on the International Space Station—The Composition, Growth, and Development of Plant Cell Walls under Microgravity Conditions

    No full text
    In the preparation for missions to Mars, basic knowledge of the mechanisms of growth and development of living plants under microgravity (micro-g) conditions is essential. Focus has centered on the g-effects on rigidity, including mechanisms of signal perception, transduction, and response in gravity resistance. These components of gravity resistance are linked to the evolution and acquisition of responses to various mechanical stresses. An overview is given both on the basic effect of hypergravity as well as of micro-g conditions in the cell wall changes. The review includes plant experiments in the US Space Shuttle and the effect of short space stays (8–14 days) on single cells (plant protoplasts). Regeneration of protoplasts is dependent on cortical microtubules to orient the nascent cellulose microfibrils in the cell wall. The space protoplast experiments demonstrated that the regeneration capacity of protoplasts was retarded. Two critical factors are the basis for longer space experiments: a. the effects of gravity on the molecular mechanisms for cell wall development, b. the availability of facilities and hardware for performing cell wall experiments in space and return of RNA/DNA back to the Earth. Linked to these aspects is a description of existing hardware functioning on the International Space Station

    Effects of the Extraterrestrial Environment on Plants: Recommendations for Future Space Experiments for the MELiSSA Higher Plant Compartment

    No full text
    Abstract: Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space

    Perspectives for plant biology in space and analogue environments

    Get PDF
    Abstract Advancements in plant space biology are required for the realization of human space exploration missions, where the re-supply of resources from Earth is not feasible. Until a few decades ago, space life science was focused on the impact of the space environment on the human body. More recently, the interest in plant space biology has increased because plants are key organisms in Bioregenerative Life Support Systems (BLSS) for the regeneration of resources and fresh food production. Moreover, plants play an important role in psychological support for astronauts. The definition of cultivation requirements for the design, realization, and successful operation of BLSS must consider the effects of space factors on plants. Altered gravitational fields and radiation exposure are the main space factors inducing changes in gene expression, cell proliferation and differentiation, signalling and physiological processes with possible consequences on tissue organization and organogenesis, thus on the whole plant functioning. Interestingly, the changes at the cellular and molecular levels do not always result in organismic or developmental changes. This apparent paradox is a current research challenge. In this paper, the main findings of gravity- and radiation-related research on higher plants are summarized, highlighting the knowledge gaps that are still necessary to fill. Existing experimental facilities to simulate the effect of space factors, as well as requirements for future facilities for possible experiments to achieve fundamental biology goals are considered. Finally, the need for making synergies among disciplines and for establishing global standard operating procedures for analyses and data collection in space experiments is highlighted
    corecore