75 research outputs found

    Reduced bio-efficacy of permethrin EC impregnated bednets against an Anopheles gambiae strain with oxidase-based pyrethroid tolerance

    Get PDF
    BACKGROUND: Insecticide-treated nets (ITNs) are an integral component of malaria control programmes in Africa. How much pyrethroid resistance in malaria vectors will impact on the efficacy of ITNs is controversial. The purpose of this study was to evaluate knockdown and killing effects of ITNs on a metabolic-based resistant or tolerant malaria vector strain. METHODS: Bio-efficacy of 500 mg/m(2 )permethrin EC treated bednets was assessed on the OCEAC laboratory (OC-Lab) strain of Anopheles gambiae s.s.. This strain is resistant to DDT and tolerant to pyrethroids, with elevated mixed function oxidases. The Kisumu reference susceptible strain of A. gambiae s.s. was used as control. Nets were impregnated in February 1998 and used by households of the Ebogo village. Then they were collected monthly over six months for Bio-assays (WHO cone test). Knockdown and mortality rates were compared between the OC-Lab and the Kisumu strains, by means of the Mantel-Haenszel chi-square test. RESULTS: During the whole trial, permethrin EC knockdown rates were impressive (mostly higher than 97%). No significant difference was observed between the two strains. However, the mortality rates were significantly decreased in the OC-Lab strain (40–80%) compared with that of the Kisumu strain (75–100%). The decrease of killing effect on the OC-Lab strain was attributed to permethrin EC tolerance, due to the high oxidase metabolic activity. CONCLUSION: These data suggested an impact of pyrethroid tolerance on the residual activity of ITNs. More attention should be given to early detection of resistance using biochemical or molecular assays for better resistance management

    Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aedes aegypti </it>(Linnaeus, 1762) and <it>Aedes albopictus </it>(Skuse, 1894) are the main vectors of dengue (DENV) and chikungunya (CHIKV) viruses worldwide. As there is still no vaccine or specific treatment for DENV and CHIKV, vector control remains the cornerstone of prevention and outbreak control. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides in several areas through the world. Throughout Central Africa no recent data are available susceptible/resistant status of either vector species since the introduction/arrival of <it>Ae. albopictus </it>in this area. We therefore studied the level of resistance of these two major vectors to insecticides commonly used in Africa for mosquito control.</p> <p>Results</p> <p><it>Aedes aegypti </it>and <it>Ae. albopictus </it>were sampled in six urban localities of Cameroon (Garoua, Bertoua, Yaoundé, Bafia, Buea) and Gabon (Libreville). Larval bioassays, carried out to determine the lethal concentrations (LC<sub>50 </sub>and LC<sub>95</sub>) and resistance ratios (RR<sub>50 </sub>and RR<sub>95</sub>) suggested that both vector species were susceptible to <it>Bti </it>(<it>Bacillus thuringiensis var israeliensis</it>) and temephos. Bioassays were also performed on adults using WHO diagnostic test kits to assess phenotypic resistance to deltamethrin, DDT, fenitrothion and propoxur. These experiments showed that one population of <it>Ae. aegypti </it>(Libreville) and two populations of <it>Ae. albopictus </it>(Buea and Yaoundé) were resistant to DDT (mortality 36% to 71%). Resistance to deltamethrin was also suspected in <it>Ae. albopictus </it>from Yaoundé (83% mortality). All other field mosquito populations were susceptible to deltamethrin, DDT, fenitrothion and propoxur. No increase in the knockdown times (Kdt<sub>50 </sub>and Kdt<sub>95</sub>) was noted in the Yaoundé resistant population compared to other <it>Ae. albopictus </it>populations, suggesting the possible involvement of metabolic resistance to deltamethrin and DDT.</p> <p>Conclusion</p> <p>In view of the recent increase in dengue and chikungunya outbreaks in Central Africa, these unique comparative data on the insecticide susceptibility of <it>Ae. aegypti </it>and <it>Ae. albopictus </it>could help public health services to design more effective vector control measures.</p

    Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Knock-down </it>resistance (<it>kdr</it>) to DDT and pyrethroids in the major Afrotropical vector species, <it>Anopheles gambiae </it>sensu stricto, is associated with two alternative point mutations at amino acid position 1014 of the voltage-gated sodium channel gene, resulting in either a leucine-phenylalanine (L1014F), or a leucine-serine (L1014S) substitution. In <it>An. gambiae </it>S-form populations, the former mutation appears to be widespread in west Africa and has been recently reported from Uganda, while the latter, originally recorded in Kenya, has been recently found in Gabon, Cameroon and Equatorial Guinea. In M-form populations surveyed to date, only the L1014F mutation has been found, although less widespread and at lower frequencies than in sympatric S-form populations.</p> <p>Methods</p> <p><it>Anopheles gambiae </it>M- and S-form specimens from 19 sites from 11 west and west-central African countries were identified to molecular form and genotyped at the <it>kdr </it>locus either by Hot Oligonucleotide Ligation Assay (HOLA) or allele-specific PCR (AS-PCR).</p> <p>Results</p> <p>The <it>kdr </it>genotype was determined for about 1,000 <it>An. gambiae </it>specimens. The L1014F allele was found at frequencies ranging from 6% to 100% in all S-form samples (N = 628), with the exception of two samples from Angola, where it was absent, and coexisted with the L1014S allele in samples from Cameroon, Gabon and north-western Angola. The L1014F allele was present in M-form samples (N = 354) from Benin, Nigeria, and Cameroon, where both M- and S-forms were sympatric.</p> <p>Conclusion</p> <p>The results represent the most comprehensive effort to analyse the overall distribution of the L1014F and L1014S mutations in <it>An. gambiae </it>molecular forms, and will serve as baseline data for resistance monitoring. The overall picture shows that the emergence and spread of <it>kdr </it>alleles in <it>An. gambiae </it>is a dynamic process and that there is marked intra- and inter-form heterogeneity in resistance allele frequencies. Further studies are needed to determine: i) the importance of selection pressure exerted by both agricultural and public health use of pyrethroid insecticides, ii) the phenotypic effects, particularly when the two mutations co-occur; and iii) the epidemiological importance of <it>kdr </it>for both pyrethroid- and DDT-based malaria control operations, particularly if/when the two insecticides are to be used in concert.</p

    Resting Behaviour of Deltamethrin-Resistant Malaria Vectors, Anopheles arabiensis and Anopheles coluzzii, from North Cameroon: Upshots from a Two-Level Ordinary Logit Model

    Get PDF
    The current study was conducted in Garoua, Pitoa, and Mayo-Oulo health districts of north Cameroon, in order to investigate the resting behaviour of deltamethrin-resistant Anopheles (An.) gambiae s.l. populations and build a model of their response to the use of Permanet 2.0 long-lasting insecticidal nets (LLINs). Adult mosquitoes were collected in October and November 2011, using spray catches and window exit traps in 29 clusters with LLINs in use. Sampled An. gambiae s.l. were identified down to species and analysed for blood-meal origin, physiological and circumsporozoite protein status. Deltamethrin resistance was assessed using World Health Organization’s (WHO’s) standard protocol. A two-level ordinary logit model was used to relate the resting behaviour and deltamethrin resistance. Identified species of the An. gambiae complex included An. arabiensis (90.6%), An. coluzzii (7.1%) and An. gambiae s.s. (2.3%). They displayed 1.1–4.8% infection rates, 80% indoor-resting density and 56–80% human blood index. Eleven An. gambiae s.l. populations over the 15 tested were resistant to deltamethrin (51–89.5% mortality rates). Model results showed a significant dependence of indoor vector density on increasing deltamethrin resistance (p-value of <0.01). These behavioural and resistance patterns may lead to increasing malaria transmission in study health districts

    Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination

    Get PDF
    Abstract Malaria still has a devastating impact on public health and welfare in Cameroon. Despite the increasing number of studies conducted on disease prevalence, transmission patterns or treatment, there are to date, not enough studies summarising findings from previous works in order to identify gaps in knowledge and areas of interest where further evidence is needed to drive malaria elimination efforts. The present study seeks to address these gaps by providing a review of studies conducted so far on malaria in Cameroon since the 1940s to date. Over 250 scientific publications were consulted for this purpose. Although there has been increased scale-up of vector control interventions which significantly reduced the morbidity and mortality to malaria across the country from a prevalence of 41% of the population reporting at least one malaria case episode in 2000 to a prevalence of 24% in 2017, the situation is not yet under control. There is a high variability in disease endemicity between epidemiological settings with prevalence of Plasmodium parasitaemia varying from 7 to 85% in children aged 6 months to 15 years after long-lasting insecticidal nets (LLINs) scale-up. Four species of Plasmodium have been recorded across the country including Plasmodium falciparum, P. malariae, P. ovale and P. vivax. Several primate-infecting Plasmodium spp. are also circulating in Cameroon. A decline of artemisinin-based combinations therapeutic efficacy from 97% in 2006 to 90% in 2016 have been reported. Several mutations in the P. falciparum chloroquine resistance (Pfcrt) and P. falciparum multidrug resistance 1 (Pfmdr1) genes conferring resistance to either 4-amino-quinoleine, mefloquine, halofanthrine and quinine have been documented. Mutations in the Pfdhfr and Pfdhps genes involved in sulfadoxine-pyrimethamine are also on the rise. No mutation associated with artemisinin resistance has been recorded. Sixteen anopheline species contribute to malaria parasite transmission with six recognized as major vectors: An. gambiae, An. coluzzii, An. arabiensis, An. funestus, An. nili and An. moucheti. Studies conducted so far, indicated rapid expansion of DDT, pyrethroid and carbamate resistance in An. gambiae, An. coluzzii, An. arabiensis and An. funestus threatening the performance of LLINs. This review highlights the complex situation of malaria in Cameroon and the need to urgently implement and reinforce integrated control strategies in different epidemiological settings, as part of the substantial efforts to consolidate gains and advance towards malaria elimination in the country

    Role of Anopheles (Cellia) rufipes (Gough, 1910) and other local anophelines in human malaria transmission in the northern savannah of Cameroon: a crosssectional survey

    Get PDF
    Background As part of a study to determine the impact of insecticide resistance on the effectiveness of longlasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite transmission. Methods For four consecutive years (2011–2014), annual cross-sectional sampling of adult mosquitoes was conducted during the peak malaria season (September-October) in three health districts in northern Cameroon. Mosquitoes sampled by human landing catch and pyrethrum spray catch methods were morphologically identified, their ovaries dissected for parity determination and Anopheles gambiae siblings were identified by molecular assay. Infection with P. falciparum and blood meal source in residual fauna of indoor resting anopheline mosquitoes were determined by enzyme-linked-immunosorbent assays. Results Anopheles gambiae (sensu lato) (s.l.) comprised 18.4% of mosquitoes collected with An. arabiensis representing 66.27% of the sibling species. The proportion of An. rufipes (2.7%) collected was high with a humanbiting rate ranging between 0.441 and 11.083 bites/person/night (b/p/n) and an anthropophagic rate of 15.36%. Although overall the members of An. gambiae complex were responsible for most of the transmission with entomological inoculation rates (EIR) reaching 1.221 infective bites/person/night (ib/p/n), An. arabiensis and An.coluzzii were the most implicated. The roles of An. funestus, An. pharoensis and An. paludis were minor. Plasmodium falciparum circumsporozoite protein rate in Anopheles rufipes varied from 0.6 to 5.7% with EIR values between 0.010 and 0.481 ib/p/n Conclusions The study highlights the epidemiological role of An. rufipes alongside the members of the An.gambiae complex, and several other sympatric species in human malaria transmission during the wet season in northern Cameroon. For the first time in Cameroon, An. rufipes has been shown to be an important local malaria vector, emphasising the need to review the malaria entomological profile across the country as pre-requisite to effective vector management strategies

    Role of Anopheles (Cellia) rufipes (Gough, 1910) and other local anophelines in human malaria transmission in the northern savannah of Cameroon: a crosssectional survey

    Get PDF
    Background As part of a study to determine the impact of insecticide resistance on the effectiveness of longlasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite transmission. Methods For four consecutive years (2011–2014), annual cross-sectional sampling of adult mosquitoes was conducted during the peak malaria season (September-October) in three health districts in northern Cameroon. Mosquitoes sampled by human landing catch and pyrethrum spray catch methods were morphologically identified, their ovaries dissected for parity determination and Anopheles gambiae siblings were identified by molecular assay. Infection with P. falciparum and blood meal source in residual fauna of indoor resting anopheline mosquitoes were determined by enzyme-linked-immunosorbent assays. Results Anopheles gambiae (sensu lato) (s.l.) comprised 18.4% of mosquitoes collected with An. arabiensis representing 66.27% of the sibling species. The proportion of An. rufipes (2.7%) collected was high with a humanbiting rate ranging between 0.441 and 11.083 bites/person/night (b/p/n) and an anthropophagic rate of 15.36%. Although overall the members of An. gambiae complex were responsible for most of the transmission with entomological inoculation rates (EIR) reaching 1.221 infective bites/person/night (ib/p/n), An. arabiensis and An.coluzzii were the most implicated. The roles of An. funestus, An. pharoensis and An. paludis were minor. Plasmodium falciparum circumsporozoite protein rate in Anopheles rufipes varied from 0.6 to 5.7% with EIR values between 0.010 and 0.481 ib/p/n Conclusions The study highlights the epidemiological role of An. rufipes alongside the members of the An.gambiae complex, and several other sympatric species in human malaria transmission during the wet season in northern Cameroon. For the first time in Cameroon, An. rufipes has been shown to be an important local malaria vector, emphasising the need to review the malaria entomological profile across the country as pre-requisite to effective vector management strategies

    Design of a Two-level Adaptive Multi-Agent System for Malaria Vectors driven by an ontology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The understanding of heterogeneities in disease transmission dynamics as far as malaria vectors are concerned is a big challenge. Many studies while tackling this problem don't find exact models to explain the malaria vectors propagation.</p> <p>Methods</p> <p>To solve the problem we define an Adaptive Multi-Agent System (AMAS) which has the property to be elastic and is a two-level system as well. This AMAS is a dynamic system where the two levels are linked by an Ontology which allows it to function as a reduced system and as an extended system. In a primary level, the AMAS comprises organization agents and in a secondary level, it is constituted of analysis agents. Its entry point, a User Interface Agent, can reproduce itself because it is given a minimum of background knowledge and it learns appropriate "behavior" from the user in the presence of ambiguous queries and from other agents of the AMAS in other situations.</p> <p>Results</p> <p>Some of the outputs of our system present a series of tables, diagrams showing some factors like Entomological parameters of malaria transmission, Percentages of malaria transmission per malaria vectors, Entomological inoculation rate. Many others parameters can be produced by the system depending on the inputted data.</p> <p>Conclusion</p> <p>Our approach is an intelligent one which differs from statistical approaches that are sometimes used in the field. This intelligent approach aligns itself with the distributed artificial intelligence. In terms of fight against malaria disease our system offers opportunities of reducing efforts of human resources who are not obliged to cover the entire territory while conducting surveys. Secondly the AMAS can determine the presence or the absence of malaria vectors even when specific data have not been collected in the geographical area. In the difference of a statistical technique, in our case the projection of the results in the field can sometimes appeared to be more general.</p

    Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon

    Get PDF
    BACKGROUND: Recent field studies indicated that insecticide-treated bednets (ITNs) maintain their efficacy despite a high frequency of the knock-down resistance (kdr) gene in Anopheles gambiae populations. It was essential to evaluate ITNs efficacy in areas with metabolic-based resistance. METHODS: Bifenthrin was used in this experiment because it is considered a promising candidate for bednets impregnation. Nets were treated at 50 mg/m(2), a dose that has high insecticidal activity on kdr mosquitoes and at 5 mg/m(2), a dose that kills 95% of susceptible mosquitoes under laboratory conditions with 3 minutes exposure. Bednets were holed to mimic physical damage. The trial was conducted in three experimental huts from Pitoa, North-Cameroon where Anopheles gambiae displays metabolic resistance and cohabits with An. funestus. RESULTS: Bifenthrin at 50 mg/m(2 )significantly reduced anophelines' entry rate (>80%). This was not observed at 5 mg/m(2). Both treatments increased exophily in An. gambiae, and to a lesser extent in An. funestus. With bifenthrin at high dosage, over 60% reduction in blood feeding and 75–90% mortality rates were observed in both vectors. Despite presence of holes, only a single An. gambiae and two An. funestus females were collected inside the treated net, and all were found dead. The same trends were observed with low dosage bifenthrin though in most cases, no significant difference was found with the untreated control net. CONCLUSION: Bifenthrin-impregnated bednets at 50 mg/m(2 )were efficient in the reduction of human-vector contact in Pitoa. Considerable personal protection was gained against An. funestus and metabolic pyrethroid resistant An. gambiae populations

    Kdr-based insecticide resistance in Anopheles gambiae s.s populations in

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The spread of insecticide resistance in the malaria mosquito, <it>Anopheles gambiae </it>is a serious threat for current vector control strategies which rely on the use of insecticides. Two mutations at position 1014 of the S<sub>6 </sub>transmembrane segment of domain II in the voltage gated sodium channel, known as <it>kdr </it>(<it>knockdown resistance</it>) mutations leading to a change of a Leucine to a Phenylalanine (L1014F) or to a Serine (L1014S) confer resistance to DDT and pyrethroid insecticides in the insect. This paper presents the current distribution of the <it>kdr </it>alleles in wild <it>Anopheles gambiae </it>populations in Cameroon.</p> <p>Results</p> <p>A total of 1,405 anopheline mosquitoes were collected from 21 localities throughout Cameroon and identified as <it>An. gambiae </it>(N = 1,248; 88.8%), <it>An. arabiensis </it>(N = 120; 8.5%) and <it>An. melas </it>(N = 37; 2.6%). Both <it>kdr </it>alleles 1014F and 1014S were identified in the M and S molecular forms of <it>An. gambiae </it>s.s. The frequency of the 1014F allele ranged from 1.7 to 18% in the M-form, and from 2 to 90% in the S-form. The 1014S allele ranged from 3-15% in the S-form and in the M-form its value was below 3%. Some specimens were found to carry both resistant <it>kdr </it>alleles.</p> <p>Conclusion</p> <p>This study provides an updated distribution map of the <it>kdr </it>alleles in wild <it>An. gambiae </it>populations in Cameroon. The co-occurrence of both alleles in malaria mosquito vectors in diverse ecological zones of the country may be critical for the planning and implementation of malaria vector control interventions based on IRS and ITNs, as currently ongoing in Cameroon.</p
    • …
    corecore