648 research outputs found
One Parameter Scaling Theory for Stationary States of Disordered Nonlinear Systems
We show, using detailed numerical analysis and theoretical arguments, that
the normalized participation number of the stationary solutions of disordered
nonlinear lattices obeys a one-parameter scaling law. Our approach opens a new
way to investigate the interplay of Anderson localization and nonlinearity
based on the powerful ideas of scaling theory.Comment: 5 pages, 3 figures submitted to Physical Review Letter
Filling the holes: Evolving excised binary black hole initial data with puncture techniques
We follow the inspiral and merger of equal-mass black holes (BHs) by the
moving puncture technique and demonstrate that both the exterior solution and
the asymptotic gravitational waveforms are unchanged when the initial interior
solution is replaced by constraint-violating ``junk'' initial data. We apply
this result to evolve conformal thin-sandwich (CTS) binary BH initial data by
filling their excised interiors with arbitrary, but smooth, initial data and
evolving with standard puncture gauge choices. The waveforms generated for both
puncture and filled-CTS initial data are remarkably similar, and there are only
minor differences between irrotational and corotational CTS BH binaries. Even
the interior solutions appear to evolve to the same constraint-satisfying
solution at late times, independent of the initial data.Comment: 5 pages, 5 figures, accepted by PRD Rapid Communications, RevTe
RNA-Seq Analysis Reveals a Six-Gene SoxR Regulon in Streptomyces coelicolor
The redox-regulated transcription factor SoxR is conserved in diverse bacteria, but emerging studies suggest that this protein plays distinct physiological roles in different bacteria. SoxR regulates a global oxidative stress response (involving \u3e100 genes) against exogenous redox-cycling drugs in Escherichia coli and related enterics. In the antibiotic producers Streptomyces coelicolor and Pseudomonas aeruginosa, however, SoxR regulates a smaller number of genes that encode membrane transporters and proteins with homology to antibiotic-tailoring enzymes. In both S. coelicolor and P. aeruginosa, SoxR-regulated genes are expressed in stationary phase during the production of endogenously-produced redox-active antibiotics. These observations suggest that SoxR evolved to sense endogenous secondary metabolites and activate machinery to process and transport them in antibiotic-producing bacteria. Previous bioinformatics analysis that searched the genome for SoxR-binding sites in putative promoters defined a five-gene SoxR regulon in S. coelicolor including an ABC transporter, two oxidoreductases, a monooxygenase and an epimerase/dehydratase. Since this in silico screen may have missed potential SoxR-targets, we conducted a whole genome transcriptome comparison of wild type S. coelicolor and a soxR-deficient mutant in stationary phase using RNA-Seq. Our analysis revealed a sixth SoxR-regulated gene in S. coelicolor that encodes a putative quinone oxidoreductase. Knowledge of the full complement of genes regulated by SoxR will facilitate studies to elucidate the function of this regulatory molecule in antibiotic producers
Bottom-up Photonic Crystal Lasers
The directed growth of III–V nanopillars is used to demonstrate bottom-up photonic crystal lasers. Simultaneous formation of both the photonic band gap and active gain region is achieved via catalyst-free selective-area metal–organic chemical vapor deposition on masked GaAs substrates. The nanopillars implement a GaAs/InGaAs/GaAs axial double heterostructure for accurate, arbitrary placement of gain within the cavity and lateral InGaP shells to reduce surface recombination. The lasers operate single-mode at room temperature with low threshold peak power density of ~625 W/cm^2. Cavity resonance and lasing wavelength is lithographically defined by controlling pillar pitch and diameter to vary from 960 to 989 nm. We envision this bottom-up approach to pillar-based devices as a new platform for photonic systems integration
Recommended from our members
A novel NGS library preparation method to characterize native termini of fragmented DNA.
Biological and chemical DNA fragmentation generates DNA molecules with a variety of termini, including blunt ends and single-stranded overhangs. We have developed a Next Generation Sequencing (NGS) assay, XACTLY, to interrogate the termini of fragmented DNA, information traditionally lost in standard NGS library preparation methods. Here we describe the XACTLY method, showcase its sensitivity and specificity, and demonstrate its utility in in vitro experiments. The XACTLY assay is able to report relative abundances of all lengths and types (5' and 3') of single-stranded overhangs, if present, on each DNA fragment with an overall accuracy between 80-90%. In addition, XACTLY retains the sequence of each native DNA molecule after fragmentation and can capture the genomic landscape of cleavage events at single nucleotide resolution. The XACTLY assay can be applied as a novel research and discovery tool for fragmentation analyses and in cell-free DNA
Digital-is-Physical : How Functional Fabrication Disrupts Ubicomp Design Principles
Ubiquitous computing has long explored design through the conceptual separation of digital and physical materials. We describe how the emergence of the fabrication community in HCI will challenge these conceptual principles. The idea of digital material in ubicomp ‘hides’ lower level abstractions such as physical architectures and materials from designers. As new fabrication techniques make these abstractions accessible to makers, physical materials are being used to encode digital functionality. Form (traditionally physical) and function (traditionally digital) can be mutually expressed within material design. We outline how emerging printed electronics techniques will enable functional fabrication, current limitations and opportunities for end-user fabrication of functional devices, and implications for new principles that emphasise combined physical design of form and function
Quasiequilibrium sequences of black-hole--neutron-star binaries in general relativity
We construct quasiequilibrium sequences of black hole-neutron star binaries
for arbitrary mass ratios by solving the constraint equations of general
relativity in the conformal thin-sandwich decomposition. We model the neutron
star as a stationary polytrope satisfying the relativistic equations of
hydrodynamics, and account for the black hole by imposing equilibrium boundary
conditions on the surface of an excised sphere (the apparent horizon). In this
paper we focus on irrotational configurations, meaning that both the neutron
star and the black hole are approximately nonspinning in an inertial frame. We
present results for a binary with polytropic index n=1, mass ratio
M_{irr}^{BH}/M_{B}^{NS}=5 and neutron star compaction
M_{ADM,0}^{NS}/R_0=0.0879, where M_{irr}^{BH} is the irreducible mass of the
black hole, M_{B}^{NS} the neutron star baryon rest-mass, and M_{ADM,0}^{NS}
and R_0 the neutron star Arnowitt-Deser-Misner mass and areal radius in
isolation, respectively. Our models represent valid solutions to Einstein's
constraint equations and may therefore be employed as initial data for
dynamical simulations of black hole-neutron star binaries.Comment: 5 pages, 1 figure, revtex4, published in Phys.Rev.
- …