31 research outputs found

    Pediatric Foreign Body Aspiration

    No full text
    OBJECTIVES After completing this article, readers should be able to: 1. Delineate the signs and symptoms of foreign body aspiration. 2. Explain the process of evaluating for suspected foreign body aspiration. 3. Describe the possible radiographic manifestations of foreign body aspiration. 4. Explain the management of foreign body aspiration in children. 5. Delineate the potential late complications of foreign body aspiration

    MGMT inhibition in ER positive breast cancer leads to CDC2, TOP2A, AURKB, CDC20, KIF20A, Cyclin A2, Cyclin B2, Cyclin D1, ERα and survivin inhibition and enhances response to temozolomide

    No full text
    The DNA damage repair enzyme, O6-methylguanine DNA methyltransferase (MGMT) is overexpressed in breast cancer, correlating directly with estrogen receptor (ER) expression and function. In ER negative breast cancer the MGMT promoter is frequently methylated. In ER positive breast cancer MGMT is upregulated and modulates ER function. Here, we evaluate MGMT’s role in control of other clinically relevant targets involved in cell cycle regulation during breast cancer oncogenesis. We show that O6-benzylguanine (BG), an MGMT inhibitor decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, cyclin B2, A2, D1, ERα and survivin and induces c-PARP and p21 and sensitizes ER positive breast cancer to temozolomide (TMZ). Further, siRNA inhibition of MGMT inhibits CDC2, TOP2A, AURKB, KIF20A, Cyclin B2, A2 and survivin and induces p21. Combination of BG+TMZ decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, Cyclin A2, B2, D1, ERα and survivin. Temozolomide alone inhibits MGMT expression in a dose and time dependent manner and increases p21 and cytochrome c. Temozolomide inhibits transcription of TOP2A, AURKB, KIF20A and does not have any effect on CDC2 and CDC20 and induces p21. BG+/-TMZ inhibits breast cancer growth. In our orthotopic ER positive breast cancer xenografts, BG+/-TMZ decreases ki-67, CDC2, CDC20, TOP2A, AURKB and induces p21 expression. In the same model, BG+TMZ combination inhibits breast tumor growth in vivo compared to single agent (TMZ or BG) or control. Our results show that MGMT inhibition is relevant for inhibition of multiple downstream targets involved in tumorigenesis. We also show that MGMT inhibition increases ER positive breast cancer sensitivity to alkylator based chemotherapy

    Two-year outcomes after transcatheter aortic valve replacement with mechanical vs self-expanding valves: The REPRISE III randomized clinical trial

    No full text
    Importance: To our knowledge, REPRISE III is the first large randomized comparison of 2 different transcatheter aortic valve replacement platforms: the mechanically expanded Lotus valve (Boston Scientific) and self-expanding CoreValve (Medtronic). Objective: To evaluate outcomes of Lotus vs CoreValve after 2 years. Design, Setting, and Participants: A total of 912 patients with high/extreme risk and severe, symptomatic aortic stenosis enrolled between September 22, 2014, and December 24, 2015, were randomized 2:1 to receive Lotus (607 [66.6%]) or CoreValve (305 [33.4%] at 55 centers in North America, Europe, and Australia. The first 2-year visit occurred on October 17, 2016, and the last was conducted on April 12, 2018. Clinical and echocardiographic assessments are complete through 2 years and will continue annually through 5 years. Main Outcomes and Measures: All-cause mortality and all-cause mortality or disabling stroke at 2 years. Other clinical factors included overall stroke, disabling stroke, repeated procedures, rehospitalization, valve thrombosis, and pacemaker implantation. Echocardiographic analyses included effective orifice area, mean gradient, and paravalvular leaks (PVLs). Results: Of 912 participants, the mean (SD) age was 82.8 (7.3) years, 465 (51%) were women, and the mean (SD) Society of Thoracic Surgeons predicted risk of mortality was 6.8% (4.0%). At 2 years, all-cause death was 21.3% with Lotus vs 22.5% with CoreValve (hazard ratio [HR], 0.94; 95% CI, 0.69-1.26; P = .67) and all-cause mortality or disabling stroke was 22.8% with Lotus and 27.0% with CoreValve (HR, 0.81; 95% CI, 0.61-1.07; P = .14). Overall stroke was 8.4% vs 11.4% (HR, 0.75; 95% CI, 0.48-1.17; P = .21); disabling stroke was more frequent with CoreValve vs Lotus (4.7% Lotus vs 8.6% CoreValve; HR, 0.53; 95% CI, 0.31-0.93; P = .02). More Lotus patients received a new permanent pacemaker (41.7% vs 26.1%; HR, 1.87; 95% CI, 1.41-2.49; P \u3c .01) or had a valve thrombosis (3.0% vs 0.0%; P \u3c .01) compared with CoreValve. More patients who received CoreValve experienced a repeated procedure (0.6% Lotus vs 2.9% CoreValve; HR, 0.19; 95% CI, 0.05-0.70; P \u3c .01), valve migration (0.0% vs 0.7%; P = .05), or embolization (0.0% vs 2.0%; P \u3c .01) than Lotus. Valve areas remained significantly larger and the mean gradient was lower with CoreValve than Lotus (valve area, mean [SD]: Lotus, 1.53 [0.49] cm2 vs CoreValve, 1.76 [0.51] cm2; P \u3c .01; valve gradient, mean [SD]: Lotus, 13.0 [6.7] mm Hg vs 8.1 [3.7] mm Hg; P \u3c .01). Moderate or greater PVL was more frequent with CoreValve (0.3% Lotus vs 3.8% CoreValve; P \u3c .01) at 2 years. Larger improvements in New York Heart Association (NYHA) functional class were observed with Lotus compared with CoreValve (improved by ≥1 NYHA class: Lotus, 338 of 402 [84.1%] vs CoreValve, 143 of 189 [75.7%]; P = .01; improved by ≥2 NYHA classes: 122 of 402 [37.3%] vs 65 of 305 [21.3%]). Conclusions and Relevance: After 2 years, all-cause mortality rates, mortality or disabling stroke were similar between Lotus and CoreValve. Disabling stroke, functional class, valve migration, and PVL favored the Lotus arm whereas valve hemodynamics, thrombosis, and new pacemaker implantation favored the CoreValve arm. Trial Registration: clinicaltrials.gov Identifier: NCT02202434

    Two-Year Outcomes After Transcatheter Aortic Valve Replacement With Mechanical vs Self-expanding Valves: The REPRISE III Randomized Clinical Trial.

    No full text
    Importance: To our knowledge, REPRISE III is the first large randomized comparison of 2 different transcatheter aortic valve replacement platforms: the mechanically expanded Lotus valve (Boston Scientific) and self-expanding CoreValve (Medtronic). Objective: To evaluate outcomes of Lotus vs CoreValve after 2 years. Design, Setting, and Participants: A total of 912 patients with high/extreme risk and severe, symptomatic aortic stenosis enrolled between September 22, 2014, and December 24, 2015, were randomized 2:1 to receive Lotus (607 [66.6%]) or CoreValve (305 [33.4%] at 55 centers in North America, Europe, and Australia. The first 2-year visit occurred on October 17, 2016, and the last was conducted on April 12, 2018. Clinical and echocardiographic assessments are complete through 2 years and will continue annually through 5 years. Main Outcomes and Measures: All-cause mortality and all-cause mortality or disabling stroke at 2 years. Other clinical factors included overall stroke, disabling stroke, repeated procedures, rehospitalization, valve thrombosis, and pacemaker implantation. Echocardiographic analyses included effective orifice area, mean gradient, and paravalvular leaks (PVLs). Results: Of 912 participants, the mean (SD) age was 82.8 (7.3) years, 465 (51%) were women, and the mean (SD) Society of Thoracic Surgeons predicted risk of mortality was 6.8% (4.0%). At 2 years, all-cause death was 21.3% with Lotus vs 22.5% with CoreValve (hazard ratio [HR], 0.94; 95% CI, 0.69-1.26; P = .67) and all-cause mortality or disabling stroke was 22.8% with Lotus and 27.0% with CoreValve (HR, 0.81; 95% CI, 0.61-1.07; P = .14). Overall stroke was 8.4% vs 11.4% (HR, 0.75; 95% CI, 0.48-1.17; P = .21); disabling stroke was more frequent with CoreValve vs Lotus (4.7% Lotus vs 8.6% CoreValve; HR, 0.53; 95% CI, 0.31-0.93; P = .02). More Lotus patients received a new permanent pacemaker (41.7% vs 26.1%; HR, 1.87; 95% CI, 1.41-2.49; P \u3c .01) or had a valve thrombosis (3.0% vs 0.0%; P \u3c .01) compared with CoreValve. More patients who received CoreValve experienced a repeated procedure (0.6% Lotus vs 2.9% CoreValve; HR, 0.19; 95% CI, 0.05-0.70; P \u3c .01), valve migration (0.0% vs 0.7%; P = .05), or embolization (0.0% vs 2.0%; P \u3c .01) than Lotus. Valve areas remained significantly larger and the mean gradient was lower with CoreValve than Lotus (valve area, mean [SD]: Lotus, 1.53 [0.49] cm2 vs CoreValve, 1.76 [0.51] cm2; P \u3c .01; valve gradient, mean [SD]: Lotus, 13.0 [6.7] mm Hg vs 8.1 [3.7] mm Hg; P \u3c .01). Moderate or greater PVL was more frequent with CoreValve (0.3% Lotus vs 3.8% CoreValve; P \u3c .01) at 2 years. Larger improvements in New York Heart Association (NYHA) functional class were observed with Lotus compared with CoreValve (improved by ≥1 NYHA class: Lotus, 338 of 402 [84.1%] vs CoreValve, 143 of 189 [75.7%]; P = .01; improved by ≥2 NYHA classes: 122 of 402 [37.3%] vs 65 of 305 [21.3%]). Conclusions and Relevance: After 2 years, all-cause mortality rates, mortality or disabling stroke were similar between Lotus and CoreValve. Disabling stroke, functional class, valve migration, and PVL favored the Lotus arm whereas valve hemodynamics, thrombosis, and new pacemaker implantation favored the CoreValve arm. Trial Registration: clinicaltrials.gov Identifier: NCT02202434
    corecore