981 research outputs found
Recommended from our members
Evaluation of bi-layer silk fibroin grafts for onlay urethroplasty in a rabbit model of urethral stricture disease
Background: Autologous tissues such as buccal mucosa (BM) are widely used for reconstruction of urethral strictures; however, limitations such as donor site morbidity and scarce tissue supply require the development of alternative biomaterials for urethral repair. The goals of this study were to determine the safety and efficacy of bi-layer silk fibroin (BLSF) matrices for urethral stricture repair and compare histological and functional outcomes to the standard approach, BM urethroplasty under good laboratory practices.Material and methods: A total of 13 rabbits exhibiting urethral stricture formation following electrocoagulation injury were treated with onlay urethroplasty with either acellular BLSF (N = 7) or autologous BM (N = 6) grafts for 3 months. Uninjured control rabbits were maintained in parallel (N = 4).Results and conclusion: Animals receiving BLSF implants were demonstrated to be functionally equivalent to BM grafts in their ability to restored strictured calibers, support micturition and promote tissue regeneration with minimal inflammation
A review of chronic pectoralis major tears: what options are available?
Rupture of the pectoralis major muscle typically occurs in the young, active male. Acute management of these injuries is recommended; however, what if the patient presents with a chronic tear of the pectoralis major? Physical exams and magnetic resonance imaging can help identify the injury and guide the physician with a plan for management. Nonoperative management is feasible, but is recommended for elderly, low-demand patients whose functional goals are minimal. Repair of chronic tears should be reserved for younger, healthier patients with high functional demands. Although operative management provides better functional outcomes, operative treatment of chronic pectoralis tears can be challenging. Tendon retraction, poor tendinous substance and quality of tissue, muscle atrophy, scar formation, and altered anatomy make direct repairs complicated, often necessitating auto- or allograft use. We review the various graft options and fixation methods that can be used when treating patients with chronic pectoralis major tears
Comprehensive, Evidence-Based, Consensus Guidelines for Prescription of Opioids for Chronic Non-Cancer Pain from the American Society of Interventional Pain Physicians (ASIPP).
BACKGROUND: Opioid prescribing in the United States is decreasing, however, the opioid epidemic is continuing at an uncontrollable rate. Available data show a significant number of opioid deaths, primarily associated with illicit fentanyl use. It is interesting to also note that the data show no clear correlation between opioid prescribing (either number of prescriptions or morphine milligram equivalent [MME] per capita), opioid hospitalizations, and deaths. Furthermore, the data suggest that the 2016 guidelines from the Centers for Disease Control and Prevention (CDC) have resulted in notable problems including increased hospitalizations and mental health disorders due to the lack of appropriate opioid prescribing as well as inaptly rapid tapering or weaning processes. Consequently, when examined in light of other policies and complications caused by COVID-19, a fourth wave of the opioid epidemic has been emerging.
OBJECTIVES: In light of this, we herein seek to provide guidance for the prescription of opioids for the management of chronic non-cancer pain. These clinical practice guidelines are based upon a systematic review of both clinical and epidemiological evidence and have been developed by a panel of multidisciplinary experts assessing the quality of the evidence and the strength of recommendations and offer a clear explanation of logical relationships between various care options and health outcomes.
METHODS: The methods utilized included the development of objectives and key questions for the various facets of opioid prescribing practice. Also utilized were employment of trustworthy standards, and appropriate disclosures of conflicts of interest(s). The literature pertaining to opioid use, abuse, effectiveness, and adverse consequences was reviewed. The recommendations were developed after the appropriate review of text and questions by a panel of multidisciplinary subject matter experts, who tabulated comments, incorporated changes, and developed focal responses to questions posed. The multidisciplinary panel finalized 20 guideline recommendations for prescription of opioids for chronic non-cancer pain. Summary of the results showed over 90% agreement for the final 20 recommendations with strong consensus. The consensus guidelines included 4 sections specific to opioid therapy with 1) ten recommendations particular to initial steps of opioid therapy; 2) five recommendations for assessment of effectiveness of opioid therapy; 3) three recommendations regarding monitoring adherence and side effects; and 4) two general, final phase recommendations.
LIMITATIONS: There is a continued paucity of literature of long-term opioid therapy addressing chronic non-cancer pain. Further, significant biases exist in the preparation of guidelines, which has led to highly variable rules and regulations across various states.
CONCLUSION: These guidelines were developed based upon a comprehensive review of the literature, consensus among expert panelists, and in alignment with patient preferences, and shared decision-making so as to improve the long-term pain relief and function in patients with chronic non-cancer pain. Consequently, it was concluded - and herein recommended - that chronic opioid therapy should be provided in low doses with appropriate adherence monitoring and understanding of adverse events only to those patients with a proven medical necessity, and who exhibit stable improvement in both pain relief and activities of daily function, either independently or in conjunction with other modalities of treatments
Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe
The Extragalactic Background Light (EBL) includes photons with wavelengths
from ultraviolet to infrared, which are effective at attenuating gamma rays
with energy above ~10 GeV during propagation from sources at cosmological
distances. This results in a redshift- and energy-dependent attenuation of the
gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts
(GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray
blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using
photons above 10 GeV collected by Fermi over more than one year of observations
for these sources, we investigate the effect of gamma-ray flux attenuation by
the EBL. We place upper limits on the gamma-ray opacity of the Universe at
various energies and redshifts, and compare this with predictions from
well-known EBL models. We find that an EBL intensity in the optical-ultraviolet
wavelengths as great as predicted by the "baseline" model of Stecker et al.
(2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication
in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A.
Reimer, L.C. Reye
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Roadmap for unconventional computing with nanotechnology
In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries.</p
- …