111 research outputs found

    Divergence of the Quantum Stress Tensor on the Cauchy Horizon in 2-d Dust Collapse

    Get PDF
    We prove that the quantum stress tensor for a massless scalar field in two dimensional non-selfsimilar Tolman Bondi dust collapse and Vaidya radiation collapse models diverges on the Cauchy horizon, if the latter exists. The two dimensional model is obtained by suppressing angular co-ordinates in the corresponding four dimensional spherical model.Comment: 16 pages, no figures, LaTeX fil

    Quantum Radiation from Black Holes and Naked Singularities in Spherical Dust Collapse

    Get PDF
    A sufficiently massive collapsing star will end its life as a spacetime singularity. The nature of the Hawking radiation emitted during collapse depends critically on whether the star's boundary conditions are such as would lead to the eventual formation of a black hole or, alternatively, to the formation of a naked singularity. This latter possibility is not excluded by the singularity theorems. We discuss the nature of the Hawking radiation emitted in each case. We justify the use of Bogoliubov transforms in the presence of a Cauchy horizon and show that if spacetime is assumed to terminate at the Cauchy horizon, the resulting spectrum is thermal, but with a temperature different from the Hawking temperature.Comment: PHYZZX macros, 27 pages, 3 figure

    Gravitational Collapse, Black Holes and Naked Singularities

    Get PDF
    This article gives an elementary review of gravitational collapse and the cosmic censorship hypothesis. Known models of collapse resulting in the formation of black holes and naked singularities are summarized. These models, when taken together, suggest that the censorship hypothesis may not hold in classical general relativity. The nature of the quantum processes that take place near a naked singularity, and their possible implication for observations, is briefly discussed.Comment: 17 pages, Latex File. Based on a talk given at the Discussion Workshop on Black Holes, Bangalore, 9-12 Dec. 1997, to appear in the Conference Proceeding

    Cellulose Acetate Binder-Based LOVA Gun Propellant for Tank Guns.

    Get PDF
    Cellulose acetate (CA) binder-based low vulnerability ammunition (LOYA) gun propellant formulations with varying percentages of fine RDX as energetic ingredient have been studied. RDX percentage varied from 76 to 80 in these formulations. An optimised composition with 78 per cent RDX was then studied exhaustively. Ballistic data determined by closed vessel (CV) evaluation and vulnerability aspects obtained by safety tests were then compared vis-a-vis the properties of standard triple base NQ composition. Theoretical prediction and CV test results indicated that the CA binder-based LOVA gun propellant Could satisfactorily meet the ballistic requirements for gun application

    Gravitational Collapse of Inhomogeneous Dust in (2+1) Dimensions

    Full text link
    We examine the gravitational collapse of spherically symmetric inhomogeneous dust in (2+1) dimensions, with cosmological constant. We obtain the analytical expressions for the interior metric. We match the solution to a vacuum exterior. We discuss the nature of the singularity formed by analyzing the outgoing radial null geodesics. We examine the formation of trapped surfaces during the collapse.Comment: Accepted for publication in CQ

    Naked Singularities in Higher Dimensional Szekeres Space-time

    Full text link
    In this paper we study the quasi-spherical gravitational collapse of (n+2) dimensional Szekeres space-time. The nature of the central shell focusing singularity so formed is analyzed by studying both the radial null and time-like geodesic originated from it. We follow the approach of Barve et al to analyze the null geodesic and find naked singularity in different situations.Comment: 11 Latex Pages, 4 figures, RevTex styl

    Physical aspects of naked singularity explosion - How does a naked singularity explode? --

    Get PDF
    The behaviors of quantum stress tensor for the scalar field on the classical background of spherical dust collapse is studied. In the previous works diverging flux of quantum radiation was predicted. We use the exact expressions in a 2D model formulated by Barve et al. Our present results show that the back reaction does not become important during the semiclassical phase. The appearance of the naked singularity would not be affected by this quantum field radiation. To predict whether the naked singularity explosion occurs or not we need the theory of quantum gravity. We depict the generation of the diverging flux inside the collapsing star. The quantum energy is gathered around the center positively. This would be converted to the diverging flux along the Cauchy horizon. The ingoing negative flux crosses the Cauchy horizon. The intensity of it is divergent only at the central naked singularity. This diverging negative ingoing flux is balanced with the outgoing positive diverging flux which propagates along the Cauchy horizon. After the replacement of the naked singularity to the practical high density region the instantaneous diverging radiation would change to more milder one with finite duration.Comment: 18 pages, 16 figure

    Toward a Midisuperspace Quantization of LeMaitre-Tolman-Bondi Collapse Models

    Get PDF
    LeMa\^\i tre-Tolman-Bondi models of spherical dust collapse have been used and continue to be used extensively to study various stellar collapse scenarios. It is by now well-known that these models lead to the formation of black holes and naked singularities from regular initial data. The final outcome of the collapse, particularly in the event of naked singularity formation, depends very heavily on quantum effects during the final stages. These quantum effects cannot generally be treated semi-classically as quantum fluctuations of the gravitational field are expected to dominate before the final state is reached. We present a canonical reduction of LeMa\^\i tre-Tolman-Bondi space-times describing the marginally bound collapse of inhomogeneous dust, in which the physical radius, RR, the proper time of the collapsing dust, Ď„\tau, and the mass function, FF, are the canonical coordinates, R(r)R(r), Ď„(r)\tau(r) and F(r)F(r) on the phase space. Dirac's constraint quantization leads to a simple functional (Wheeler-DeWitt) equation. The equation is solved and the solution can be employed to study some of the effects of quantum gravity during gravitational collapse with different initial conditions.Comment: 9 pages, 1 figure, Latex file. Minor corrections made. A general solution of the constraints is presented. Revised version to appear in Phys. Rev.

    Role of Initial Data in Higher Dimensional Quasi-Spherical Gravitational Collapse

    Full text link
    We study the gravitational collapse in (n+2n+2)-D quasi-spherical Szekeres space-time (which possess no killing vectors) with dust as the matter distribution. Instead of choosing the radial coordinate `rr' as the initial value for the scale factor RR, we consider a power function of rr as the initial scale for the radius RR. We examine the influence of initial data on the formation of singularity in gravitational collapse.Comment: 7 Latex Pages, RevTex Style, No figure

    Naked Singularity Explosion

    Full text link
    It is known that the gravitational collapse of a dust ball results in naked singularity formation from an initial density profile which is physically reasonable. In this paper, we show that explosive radiation is emitted during the formation process of the naked singularity.Comment: 6 pages, 3 figures, Accepted for Publication in Phys. Rev. D as a Rapid Communicatio
    • …
    corecore