21,520 research outputs found
Quasi-spherical gravitational collapse and the role of initial data, anisotropy and inhomogeneity
In this paper, the role of anisotropy and inhomogeneity has been studied in
quasi-spherical gravitational collapse. Also the role of initial data has been
investigated in characterizing the final state of collapse. Finally, a linear
transformation on the initial data set has been presented and its impact has
been discussed.Comment: RevTex, 7 Latex pages, No figure
Role of initial data in spherical collapse
We bring out here the role of initial data in causing the black hole and
naked singularity phases as the final end state of a continual gravitational
collapse. The collapse of a type I general matter field is considered, which
includes most of the known physical forms of matter. It is shown that given the
distribution of the density and pressure profiles at the initial surface from
which the collapse evolves, there is a freedom in choosing rest of the free
functions, such as the velocities of the collapsing shells, so that the end
state could be either a black hole or a naked singularity depending on this
choice. It is thus seen that it is the initial data that determines the end
state of spherical collapse in terms of these outcomes, and we get a good
picture of how these phases come about.Comment: 5 pages, Revtex4, Revised version, To appear in Physical Review
A characterization of the central shell-focusing singularity in spherical gravitational collapse
We give a characterization of the central shell-focusing curvature
singularity that can form in the spherical gravitational collapse of a bounded
matter distribution obeying the dominant energy condition. This
characterization is based on the limiting behaviour of the mass function in the
neighbourhood of the singularity. Depending on the rate of growth of the mass
as a function of the area radius R, the singularity may be either covered or
naked. The singularity is naked if this growth rate is slower than R, covered
if it is faster than R, and either naked or covered if the growth rate is same
as R.Comment: 12 pages, Latex, significantly revised version, including change of
title. Revised version to appear in Classical and Quantum Gravit
On the genericity of spacetime singularities
We consider here the genericity aspects of spacetime singularities that occur
in cosmology and in gravitational collapse. The singularity theorems (that
predict the occurrence of singularities in general relativity) allow the
singularities of gravitational collapse to be either visible to external
observers or covered by an event horizon of gravity. It is shown that the
visible singularities that develop as final states of spherical collapse are
generic. Some consequences of this fact are discussed.Comment: 19 pages, To be published in the Raychaudhuri Volume, eds. Naresh
Dadhich, Pankaj Joshi and Probir Ro
Gravitational collapse of an isentropic perfect fluid with a linear equation of state
We investigate here the gravitational collapse end states for a spherically
symmetric perfect fluid with an equation of state . It is shown that
given a regular initial data in terms of the density and pressure profiles at
the initial epoch from which the collapse develops, the black hole or naked
singularity outcomes depend on the choice of rest of the free functions
available, such as the velocities of the collapsing shells, and the dynamical
evolutions as allowed by Einstein equations. This clarifies the role that
equation of state and initial data play towards determining the final fate of
gravitational collapse.Comment: 7 Pages, Revtex4, To appear in Classical and Quantum Gravit
On the global visibility of singularity in quasi-spherical collapse
We analyze here the issue of local versus the global visibility of a
singularity that forms in gravitational collapse of a dust cloud, which has
important implications for the weak and strong versions of the cosmic
censorship hypothesis. We find conditions as to when a singularity will be only
locally naked, rather than being globally visible, thus preseving the weak
censorship hypothesis. The conditions for formation of a black hole or naked
singularity in the Szekeres quasi-spherical collapse models are worked out. The
causal behaviour of the singularity curve is studied by examining the outgoing
radial null geodesics, and the final outcome of collapse is related to the
nature of the regular initial data specified on an initial hypersurface from
which the collapse evolves. An interesting feature that emerges is the
singularity in Szekeres spacetimes can be ``directionally naked''.Comment: Latex file, 32 pages, 12 postscript figures. To appear in the Journal
of General Relativity and Gravitatio
The Final Fate of Spherical Inhomogeneous Dust Collapse
We examine the role of the initial density and velocity distribution in the
gravitational collapse of a spherical inhomogeneous dust cloud. Such a collapse
is described by the Tolman-Bondi metric which has two free functions: the
`mass-function' and the `energy function', which are determined by the initial
density and velocity profile of the cloud. The collapse can end in a black-hole
or a naked singularity, depending on the initial parameters characterizing
these profiles. In the marginally bound case, we find that the collapse ends in
a naked singularity if the leading non-vanishing derivative of the density at
the center is either the first one or the second one. If the first two
derivatives are zero, and the third derivative non-zero, the singularity could
either be naked or covered, depending on a quantity determined by the third
derivative and the central density. If the first three derivatives are zero,
the collapse ends in a black hole. In particular, the classic result of
Oppenheimer and Snyder, that homogeneous dust collapse leads to a black hole,
is recovered as a special case. Analogous results are found when the cloud is
not marginally bound, and also for the case of a cloud starting from rest. We
also show how the strength of the naked singularity depends on the density and
velocity distribution. Our analysis generalizes and simplifies the earlier work
of Christodoulou and Newman [4,5] by dropping the assumption of evenness of
density functions. It turns out that relaxing this assumption allows for a
smooth transition from the naked singularity phase to the black-hole phase, and
also allows for the occurrence of strong curvature naked singularities.Comment: 23 pages; Plain Tex; TIFR-TAP preprin
Sub-Nanosecond Time of Flight on Commercial Wi-Fi Cards
Time-of-flight, i.e., the time incurred by a signal to travel from
transmitter to receiver, is perhaps the most intuitive way to measure distances
using wireless signals. It is used in major positioning systems such as GPS,
RADAR, and SONAR. However, attempts at using time-of-flight for indoor
localization have failed to deliver acceptable accuracy due to fundamental
limitations in measuring time on Wi-Fi and other RF consumer technologies.
While the research community has developed alternatives for RF-based indoor
localization that do not require time-of-flight, those approaches have their
own limitations that hamper their use in practice. In particular, many existing
approaches need receivers with large antenna arrays while commercial Wi-Fi
nodes have two or three antennas. Other systems require fingerprinting the
environment to create signal maps. More fundamentally, none of these methods
support indoor positioning between a pair of Wi-Fi devices
without~third~party~support.
In this paper, we present a set of algorithms that measure the time-of-flight
to sub-nanosecond accuracy on commercial Wi-Fi cards. We implement these
algorithms and demonstrate a system that achieves accurate device-to-device
localization, i.e. enables a pair of Wi-Fi devices to locate each other without
any support from the infrastructure, not even the location of the access
points.Comment: 14 page
- âŠ