3 research outputs found

    Erasure detection of a dual-rail qubit encoded in a double-post superconducting cavity

    Full text link
    Qubits with predominantly erasure errors present distinctive advantages for quantum error correction(QEC) and fault tolerant quantum computing. Logical qubits based on dual-rail encoding that exploit erasure detection have been recently proposed in superconducting circuit architectures, either with coupled transmons or cavities. Here, we implement a dual-rail qubit encoded in a compact, double-post superconducting cavity. Using an auxiliary transmon, we perform erasure detection on the dual-rail subspace. We characterize the behaviour of the codespace by a novel method to perform joint-Wigner tomography. This is based on modifying the cross-Kerr interaction between the cavity modes and the transmon. We measure an erasure rate of 3.981 +/- 0.003 (ms)-1 and a residual dephasing error rate up to 0.17 (ms)-1 within the codespace. This strong hierarchy of error rates, together with the compact and hardware-efficient nature of this novel architecture, hold promise in realising QEC schemes with enhanced thresholds and improved scaling

    Distinguishing parity-switching mechanisms in a superconducting qubit

    Full text link
    Single-charge tunneling is a decoherence mechanism affecting superconducting qubits, yet the origin of excess quasiparticle excitations (QPs) responsible for this tunneling in superconducting devices is not fully understood. We measure the flux dependence of charge-parity (or simply, ``parity'') switching in an offset-charge-sensitive transmon qubit to identify the contributions of photon-assisted parity switching and QP generation to the overall parity-switching rate. The parity-switching rate exhibits a qubit-state-dependent peak in the flux dependence, indicating a cold distribution of excess QPs which are predominantly trapped in the low-gap film of the device. Moreover, we find that the photon-assisted process contributes significantly to both parity switching and the generation of excess QPs by fitting to a model that self-consistently incorporates photon-assisted parity switching as well as inter-film QP dynamics

    Fully Directional Quantum-limited Phase-Preserving Amplifier

    Full text link
    We present a way to achieve fully directional, quantum-limited phase-preserving amplification in a four-port, four-mode superconducting Josephson circuit by utilizing interference between six parametric processes that couple all four modes. Full directionality, defined as the reverse isolation surpassing forward gain between the matched input and output ports of the amplifier, ensures its robustness against impedance mismatch that might be present at its output port during applications. Unlike existing directional phase-preserving amplifiers, both the minimal back-action and the quantum-limited added noise of this amplifier remains unaffected by noise incident on its output port. In addition, the matched input and output ports allow direct on-chip integration of these amplifiers with other circuit QED components, facilitating scaling up of superconducting quantum processors
    corecore