6 research outputs found
Edible mushrooms as potential functional foods in amelioration of hypertension
Edible mushrooms are popular functional foods attributed to their rich nutritional bioactive constituent profile influencing cardiovascular function. Edible mushrooms are omnipresent in various prescribed Dietary Approaches to Stop Hypertension, Mediterranean diet, and fortified meal plans as they are rich in amino acids, dietary fiber, proteins, sterols, vitamins, and minerals. However, without an understanding of the influence of mushroom bioactive constituents, mechanism of action on heart and allergenicity, it is difficult to fully comprehend the role of mushrooms as dietary interventions in alleviating hypertension and other cardiovascular malfunctions. To accomplish this endeavor, we chose to review edible mushrooms and their bioactive constituents in ameliorating hypertension. Hypertension and cardiovascular diseases are interrelated and if the former is managed by dietary changes, it is postulated that overall heart health could also be improved. With a concise note on different edible varieties of mushrooms, a particular focus is presented on the antihypertensive potential of mushroom bioactive constituents, mode of action, absorption kinetics and bioavailability. Ergosterol, lovastatin, cordycepin, tocopherols, chitosan, ergothioneine, γ‐aminobutyric acid, quercetin, and eritadenine are described as essential bioactives with hypotensive effects. Finally, safety concerns on allergens and limitations of consuming edible mushrooms with special reference to chemical toxins and their postulated metabolites are highlighted. It is opined that the present review will redirect toxicologists to further investigate mushroom bioactives and allergens, thereby influencing dietary interventions for heart health.Universidade de Vigo/CISU
Revisiting luteolin: An updated review on its anticancer potential
Numerous natural products found in our diet, such as polyphenols and flavonoids, can prevent the progression of cancer. Luteolin, a natural flavone, present in significant amounts in various fruits and vegetables plays a key role as a chemopreventive agent in treating various types of cancer. By inducing apoptosis, initiating cell cycle arrest, and decreasing angiogenesis, metastasis, and cell proliferation, luteolin is used to treat cancer. Its anticancer properties are attributed to its capability to engage with multiple molecular targeted sites and modify various signaling pathways in tumor cells. Luteolin has been shown to slow the spread of cancer in breast, colorectal, lung, prostate, liver, skin, pancreatic, oral, and gastric cancer models. It exhibits antioxidant properties and can be given to patients receiving Doxorubicin (DOX) chemotherapy to prevent the development of unexpected adverse reactions in the lungs and hematopoietic system subjected to DOX. Furthermore, it could be an excellent candidate for synergistic studies to overcome drug resistance in cancer cells. Accordingly, this review covers the recent literature related to the use of luteolin against different types of cancer, along with the mechanisms of action. In addition, the review highlights luteolin as a complementary medicine for preventing and treating cancer
Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, Desulfobulbus oralis
The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease