3 research outputs found

    Novel molecular imaging of cardiovascular disease in man

    Get PDF
    Cardiovascular disease remains the commonest cause of death worldwide. The majority of deaths are caused by atherosclerotic plaque rupture with resultant myocardial infarction or stroke, or rupture of abdominal aortic aneurysms. Conventional imaging modalities have consistently failed to identify atherosclerotic plaques or aneurysms with high-risk pathological features that are at highest risk of rupture or progression. The development of modern molecular imaging techniques targeted at these features could lead to the identification of such high-risk plaques and aneurysms in vivo and guide the development of novel treatment strategies. The aim of this thesis was to evaluate whether novel molecular modalities have a role in providing new insights into biological disease processes, and identify high-risk plaques and aneurysms. Using positron emission tomography-computed tomography (PET-CT), 18F-fluorodeoxyglucose and 18F-fluoride were utilised as markers of metabolic inflammation and active calcification. Cellular inflammation was assessed using ultrasmall superparamagnetic particles of iron oxide (USPIO) enhanced magnetic resonance imaging (MRI). In a prospective trial, 80 patients with myocardial infarction (n=40) and stable angina (n=40) underwent 18F-fluoride and 18F-fluorodeoxyglucose PET-CT, and invasive coronary angiography (Chapter 3). Intense 18F-fluoride uptake localised to recently ruptured plaque in patients with acute myocardial infarction. In patients with stable coronary artery disease, 18F-fluoride uptake identified coronary plaques with high-risk features on intravascular ultrasound. 18F-fluoride PET-CT is the first noninvasive imaging method to identify and localise ruptured and high-risk coronary plaques. Aortic vascular uptake of 18F- fluorodeoxyglucose was studied in patients with myocardial infarction and stable angina (Chapter 4). In a separate outcome of 1,003 patients enrolled in the Global Registry of Acute Coronary Events, we further evaluated whether infarct size predicted recurrent coronary events. Patients with myocardial infarction had higher remote atherosclerotic tracer uptake that correlated with the degree of myocardial necrosis, and exceeded that observed in patients with stable coronary disease. The outcome cohort demonstrated that patients with higher degree of myocardial necrosis had the highest risk of early recurrent myocardial infarction. This supports the hypothesis that acute myocardial infarction exacerbates systemic atherosclerotic inflammation and remote plaque destabilization: myocardial infarction begets myocardial infarction. In a prospective imaging cohort, the role inflammation and calcification was assessed in 63 patients with abdominal aortic aneurysms and 19 age and sex matched patients with atherosclerosis (Chapter 5). Compared to non-aneurysmal segments, enhanced inflammation and calcification was observed within the wall of aortic aneurysmal segments. In comparison to matched controls with atherosclerosis, the entire aorta in those with aortic aneurysm appears more highly inflamed, suggesting presence of a global aortopathy rather than a disease confined only to the abdominal region of the aorta. Aortic aneurysms have greater active inflammation and calcification than atherosclerotic controls suggesting a more intense, destructive and transmural pathological process. A subgroup of fifteen patients with aortic aneurysms underwent imaging with both PET-CT with 18F-fluorodeoxyglucose, and T2*- weighted MRI before and 24 h after administration of USPIO (Chapter 6). Whilst there was a moderate correlation between the two tracers, there were distinct differences in the pattern and distribution of uptake suggesting a differential detection of macrophage glycolytic and phagocytic activity respectively. These studies provide novel insights into vascular biological processes involved in the initiation, progression and rupture of atherosclerotic plaques and aortic aneurysms. Future longitudinal studies are needed to establish whether these techniques have a role in improving the clinical management and treatment of patients with coronary artery disease and aortic aneurysms

    In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis.

    Get PDF
    OBJECTIVES: Intraplaque angiogenesis and inflammation are key promoters of atherosclerosis and are mediated by the alpha-V beta-3 (αvβ3) integrin pathway. We investigated the applicability of the αvβ3-integrin receptor-selective positron emission tomography (PET) radiotracer 18F-fluciclatide in assessing human aortic atherosclerosis. METHODS: Vascular 18F-fluciclatide binding was evaluated using ex vivo analysis of carotid endarterectomy samples with autoradiography and immunohistochemistry, and in vivo kinetic modelling following radiotracer administration. Forty-six subjects with a spectrum of atherosclerotic disease categorised as stable (n=27) or unstable (n=19; recent myocardial infarction) underwent PET and CT imaging of the thorax after administration of 229 (IQR 217-237) MBq 18F-fluciclatide. Thoracic aortic 18F-fluciclatide uptake was quantified on fused PET-CT images and corrected for blood-pool activity using the maximum tissue-to-background ratio (TBRmax). Aortic atherosclerotic burden was quantified by CT wall thickness, plaque volume and calcium scoring. RESULTS: 18F-Fluciclatide uptake co-localised with regions of increased αvβ3 integrin expression, and markers of inflammation and angiogenesis. 18F-Fluciclatide vascular uptake was confirmed in vivo using kinetic modelling, and on static imaging correlated with measures of aortic atherosclerotic burden: wall thickness (r=0.57, p=0.001), total plaque volume (r=0.56, p=0.001) and aortic CT calcium score (r=0.37, p=0.01). Patients with recent myocardial infarction had greater aortic 18F-fluciclatide uptake than those with stable disease (TBRmax 1.29 vs 1.21, p=0.02). CONCLUSIONS: In vivo expression of αvβ3 integrin in human aortic atheroma is associated with plaque burden and is increased in patients with recent myocardial infarction. Quantification of αvβ3 integrin expression with 18F-fluciclatide PET has potential to assess plaque vulnerability and disease activity in atherosclerosis
    corecore