95 research outputs found

    Group Invariant Global Pooling

    Full text link
    Much work has been devoted to devising architectures that build group-equivariant representations, while invariance is often induced using simple global pooling mechanisms. Little work has been done on creating expressive layers that are invariant to given symmetries, despite the success of permutation invariant pooling in various molecular tasks. In this work, we present Group Invariant Global Pooling (GIGP), an invariant pooling layer that is provably sufficiently expressive to represent a large class of invariant functions. We validate GIGP on rotated MNIST and QM9, showing improvements for the latter while attaining identical results for the former. By making the pooling process group orbit-aware, this invariant aggregation method leads to improved performance, while performing well-principled group aggregation

    Benchmarking Graph Neural Networks

    Full text link
    Graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. As the field grows, it becomes critical to identify key architectures and validate new ideas that generalize to larger, more complex datasets. Unfortunately, it has been increasingly difficult to gauge the effectiveness of new models in the absence of a standardized benchmark with consistent experimental settings. In this paper, we introduce a reproducible GNN benchmarking framework, with the facility for researchers to add new models conveniently for arbitrary datasets. We demonstrate the usefulness of our framework by presenting a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs) for a variety of graph tasks, i.e. graph regression/classification and node/link prediction, with medium-scale datasets.Comment: Benchmarking framework on GitHub at https://github.com/graphdeeplearning/benchmarking-gnn

    On the Expressive Power of Geometric Graph Neural Networks

    Full text link
    The expressive power of Graph Neural Networks (GNNs) has been studied extensively through the Weisfeiler-Leman (WL) graph isomorphism test. However, standard GNNs and the WL framework are inapplicable for geometric graphs embedded in Euclidean space, such as biomolecules, materials, and other physical systems. In this work, we propose a geometric version of the WL test (GWL) for discriminating geometric graphs while respecting the underlying physical symmetries: permutations, rotation, reflection, and translation. We use GWL to characterise the expressive power of geometric GNNs that are invariant or equivariant to physical symmetries in terms of distinguishing geometric graphs. GWL unpacks how key design choices influence geometric GNN expressivity: (1) Invariant layers have limited expressivity as they cannot distinguish one-hop identical geometric graphs; (2) Equivariant layers distinguish a larger class of graphs by propagating geometric information beyond local neighbourhoods; (3) Higher order tensors and scalarisation enable maximally powerful geometric GNNs; and (4) GWL's discrimination-based perspective is equivalent to universal approximation. Synthetic experiments supplementing our results are available at https://github.com/chaitjo/geometric-gnn-dojoComment: NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representation

    Point Discriminative Learning for Data-efficient 3D Point Cloud Analysis

    Full text link
    3D point cloud analysis has drawn a lot of research attention due to its wide applications. However, collecting massive labelled 3D point cloud data is both time-consuming and labor-intensive. This calls for data-efficient learning methods. In this work we propose PointDisc, a point discriminative learning method to leverage self-supervisions for data-efficient 3D point cloud classification and segmentation. PointDisc imposes a novel point discrimination loss on the middle and global level features produced by the backbone network. This point discrimination loss enforces learned features to be consistent with points belonging to the corresponding local shape region and inconsistent with randomly sampled noisy points. We conduct extensive experiments on 3D object classification, 3D semantic and part segmentation, showing the benefits of PointDisc for data-efficient learning. Detailed analysis demonstrate that PointDisc learns unsupervised features that well capture local and global geometry.Comment: This work is published in 3DV 202

    On Representation Knowledge Distillation for Graph Neural Networks

    Full text link
    Knowledge distillation is a learning paradigm for boosting resource-efficient graph neural networks (GNNs) using more expressive yet cumbersome teacher models. Past work on distillation for GNNs proposed the Local Structure Preserving loss (LSP), which matches local structural relationships defined over edges across the student and teacher's node embeddings. This paper studies whether preserving the global topology of how the teacher embeds graph data can be a more effective distillation objective for GNNs, as real-world graphs often contain latent interactions and noisy edges. We propose Graph Contrastive Representation Distillation (G-CRD), which uses contrastive learning to implicitly preserve global topology by aligning the student node embeddings to those of the teacher in a shared representation space. Additionally, we introduce an expanded set of benchmarks on large-scale real-world datasets where the performance gap between teacher and student GNNs is non-negligible. Experiments across 4 datasets and 14 heterogeneous GNN architectures show that G-CRD consistently boosts the performance and robustness of lightweight GNNs, outperforming LSP (and a global structure preserving variant of LSP) as well as baselines from 2D computer vision. An analysis of the representational similarity among teacher and student embedding spaces reveals that G-CRD balances preserving local and global relationships, while structure preserving approaches are best at preserving one or the other
    corecore