24,361 research outputs found
On the genericity of spacetime singularities
We consider here the genericity aspects of spacetime singularities that occur
in cosmology and in gravitational collapse. The singularity theorems (that
predict the occurrence of singularities in general relativity) allow the
singularities of gravitational collapse to be either visible to external
observers or covered by an event horizon of gravity. It is shown that the
visible singularities that develop as final states of spherical collapse are
generic. Some consequences of this fact are discussed.Comment: 19 pages, To be published in the Raychaudhuri Volume, eds. Naresh
Dadhich, Pankaj Joshi and Probir Ro
Role of initial data in spherical collapse
We bring out here the role of initial data in causing the black hole and
naked singularity phases as the final end state of a continual gravitational
collapse. The collapse of a type I general matter field is considered, which
includes most of the known physical forms of matter. It is shown that given the
distribution of the density and pressure profiles at the initial surface from
which the collapse evolves, there is a freedom in choosing rest of the free
functions, such as the velocities of the collapsing shells, so that the end
state could be either a black hole or a naked singularity depending on this
choice. It is thus seen that it is the initial data that determines the end
state of spherical collapse in terms of these outcomes, and we get a good
picture of how these phases come about.Comment: 5 pages, Revtex4, Revised version, To appear in Physical Review
The Final Fate of Spherical Inhomogeneous Dust Collapse
We examine the role of the initial density and velocity distribution in the
gravitational collapse of a spherical inhomogeneous dust cloud. Such a collapse
is described by the Tolman-Bondi metric which has two free functions: the
`mass-function' and the `energy function', which are determined by the initial
density and velocity profile of the cloud. The collapse can end in a black-hole
or a naked singularity, depending on the initial parameters characterizing
these profiles. In the marginally bound case, we find that the collapse ends in
a naked singularity if the leading non-vanishing derivative of the density at
the center is either the first one or the second one. If the first two
derivatives are zero, and the third derivative non-zero, the singularity could
either be naked or covered, depending on a quantity determined by the third
derivative and the central density. If the first three derivatives are zero,
the collapse ends in a black hole. In particular, the classic result of
Oppenheimer and Snyder, that homogeneous dust collapse leads to a black hole,
is recovered as a special case. Analogous results are found when the cloud is
not marginally bound, and also for the case of a cloud starting from rest. We
also show how the strength of the naked singularity depends on the density and
velocity distribution. Our analysis generalizes and simplifies the earlier work
of Christodoulou and Newman [4,5] by dropping the assumption of evenness of
density functions. It turns out that relaxing this assumption allows for a
smooth transition from the naked singularity phase to the black-hole phase, and
also allows for the occurrence of strong curvature naked singularities.Comment: 23 pages; Plain Tex; TIFR-TAP preprin
Multi-frequency scatter broadening evolution of pulsars - I
We present multi-wavelength scatter broadening observations of 47 pulsars,
made with the Giant Metre-wave Radio Telescope (GMRT), Ooty Radio Telescope
(ORT) and Long Wavelength Array (LWA). The GMRT observations have been made in
the phased array mode at 148, 234, and 610 MHz and the ORT observations at 327
MHz. The LWA data sets have been obtained from the LWA pulsar data archive. The
broadening of each pulsar as a function of observing frequency provides the
frequency scaling index, . The estimations of have been
obtained for 39 pulsars, which include entirely new estimates for 31 pulsars.
This study increases the total sample of pulsars available with
estimates by 50\%. The overall distribution of with the
dispersion measure (DM) of pulsar shows interesting variations, which are
consistent with the earlier studies. However, for a given value of DM a range
of values are observed, indicating the characteristic turbulence along
each line of sight. For each pulsar, the estimated level of turbulence,
, has also been compared with and DM. Additionally, we
compare the distribution of with the theoretically predicated model to
infer the general characteristics of the ionized interstellar medium (ISM).
Nearly 65\% of the pulsars show a flatter index (i.e., ) than
that is expected from the Kolmogorov turbulence model. Moreover, the group of
pulsars having flatter index is typically associated with an enhanced value of
than those with steeper index.Comment: 13 pages, 4 figures, 3 tables. Accepted for publication in Ap
On trapped surface formation in gravitational collapse II
Further to our consideration on trapped surfaces in gravitational collapse,
where pressures were allowed to be negative while satisfying weak energy
condition to avoid trapped surface formation, we discuss here several other
attempts of similar nature in this direction. Certain astrophysical aspects are
pointed out towards examining the physical realization of such a possibility in
realistic gravitational collapse
Gravitational collapse of an isentropic perfect fluid with a linear equation of state
We investigate here the gravitational collapse end states for a spherically
symmetric perfect fluid with an equation of state . It is shown that
given a regular initial data in terms of the density and pressure profiles at
the initial epoch from which the collapse develops, the black hole or naked
singularity outcomes depend on the choice of rest of the free functions
available, such as the velocities of the collapsing shells, and the dynamical
evolutions as allowed by Einstein equations. This clarifies the role that
equation of state and initial data play towards determining the final fate of
gravitational collapse.Comment: 7 Pages, Revtex4, To appear in Classical and Quantum Gravit
- …