362 research outputs found
Recommended from our members
Prediction and Validation of a Protein’s Free Energy Surface Using Hydrogen Exchange and (Importantly) Its Denaturant Dependence
The denaturant dependence of hydrogen–deuterium exchange (HDX) is a powerful measurement to identify the breaking of individual H-bonds and map the free energy surface (FES) of a protein including the very rare states. Molecular dynamics (MD) can identify each partial unfolding event with atomic-level resolution. Hence, their combination provides a great opportunity to test the accuracy of simulations and to verify the interpretation of HDX data. For this comparison, we use Upside, our new and extremely fast MD package that is capable of folding proteins with an accuracy comparable to that of all-atom methods. The FESs of two naturally occurring and two designed proteins are so generated and compared to our NMR/HDX data. We find that Upside’s accuracy is considerably improved upon modifying the energy function using a new machine-learning procedure that trains for proper protein behavior including realistic denatured states in addition to stable native states. The resulting increase in cooperativity is critical for replicating the HDX data and protein stability, indicating that we have properly encoded the underlying physiochemical interactions into an MD package. We did observe some mismatch, however, underscoring the ongoing challenges faced by simulations in calculating accurate FESs. Nevertheless, our ensembles can identify the properties of the fluctuations that lead to HDX, whether they be small-, medium-, or large-scale openings, and can speak to the breadth of the native ensemble that has been a matter of debate
Palaeontological evidence for an Oligocene divergence between Old World monkeys and apes
Apes and Old World monkeys are prominent components of modern African and Asian ecosystems, yet the earliest phases of their evolutionary history have remained largely undocumented(1). The absence of crown catarrhine fossils older than similar to 20 million years (Myr) has stood in stark contrast to molecular divergence estimates of similar to 25-30 Myr for the split between Cercopithecoidea (Old World monkeys) and Hominoidea (apes), implying long ghost lineages for both clades(2-4). Here we describe the oldest known fossil 'ape', represented by a partial mandible preserving dental features that place it with 'nyanzapithecine' stem hominoids. Additionally, we report the oldest stem member of the Old World monkey clade, represented by a lower third molar. Both specimens were recovered from a precisely dated 25.2-Myr-old stratum in the Rukwa Rift, a segment of the western branch of the East African Rift in Tanzania. These finds extend the fossil record of apes and Old World monkey swell into the Oligocene epoch of Africa, suggesting a possible link between diversification of crown catarrhines and changes in the African landscape brought about by previously unrecognized tectonic activity(5) in the East African rift system
Lifetime Racial/Ethnic Discrimination and Ambulatory Blood Pressure: The Moderating Effect of Age
Objective
To determine if the relationships of lifetime discrimination to ambulatory blood pressure (ABP) varied as a function of age in a sample of Black and Latino(a) adults ages 19 – 65.
Methods
Participants were 607 Black (n = 318) and Latino(a) (n = 289) adults (49% female) who completed the Perceived Ethnic Discrimination Questionnaire-Community Version (PEDQ-CV), which assesses lifetime exposure to racism/ethnic discrimination. They were outfitted with an ABP monitor to assess systolic and diastolic blood pressure (SBP, DBP) across a 24-hour period. Mixed-level modeling was conducted to examine potential interactive effects of lifetime discrimination and age to 24-hour, daytime, and nighttime ABP after adjustment for demographic, socioeconomic, personality and life stress characteristics, and substance consumption covariates (e.g., smoking, alcohol).
Results
There were significant interactions of Age × Lifetime Discrimination on 24-hour and daytime DBP (ps ≤ .04), and in particular significant interactions for the Social Exclusion component of Lifetime Discrimination. Post-hoc probing of the interactions revealed the effects of Lifetime Discrimination on DBP were seen for older, but not younger participants. Lifetime discrimination was significantly positively associated with nocturnal SBP, and these effects were not moderated by age. All associations of Lifetime Discrimination to ABP remained significant controlling for recent exposure to discrimination as well as all other covariates.
Conclusions
Exposure to racial/ethnic discrimination across the life course is associated with elevated ABP in middle to older aged Black and Latino(a) adults. Further research is needed to understand the mechanisms linking discrimination to ABP over the life course
A Complex Regulatory Network Coordinating Cell Cycles During C. elegans Development Is Revealed by a Genome-Wide RNAi Screen
The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development
Zebrafish: A See-Through Host and a Fluorescent Toolbox to Probe Host–Pathogen Interaction
In many ways, the zebrafish represents a hybrid between mouse and invertebrate infection models. Powerful forwardgenetic tools that have made invertebrates justifiably famous are not only relatively accessible in the zebrafish, but have been exploited to yield new insights into human infectious diseases, including leprosy and tuberculosis [1]. Transgenic technologies have enabled detailed, non-invasive in vivo visualization of macrophages and neutrophils in pitched battle with bacteria and fungi [2,3]. Reverse genetics with morpholinos, vivo-morpholinos, and zinc-finger nucleases (but unfortunately not homologous recombination, which for the moment remains out of reach in this organism) enable examination of the roles of specific genes during infection. Flexible genetic systems such as Gal4-UAS and Cre-Lox permit tissue-specific transformation and ablation ([3]; Figure 1)
Organic farming provides reliable environmental benefits but increases variability in crop yields: a global meta-analysis
To promote food security and sustainability, ecologically intensive farming systems should reliably produce adequate yields of high-quality food, enhance the environment, be profitable, and promote social wellbeing. Yet, while many studies address the mean effects of ecologically intensive farming systems on sustainability metrics, few have considered variability. This represents a knowledge gap because producers depend on reliable provisioning of yields, profits, and environmental services to enhance the sustainability of their production systems over time. Further, stable crop yields are necessary to ensure reliable access to nutritious foods. Here we address this by conducting a global meta-analysis to assess the average magnitude and variability of seven sustainability metrics in organic compared to conventional systems. Specifically, we explored the effects of these systems on (i) biotic abundance, (ii) biotic richness, (iii) soil organic carbon, (iv) soil carbon stocks, (v) crop yield, (vi) total production costs, and (vii) profitability. Organic farms promoted biotic abundance, biotic richness, soil carbon, and profitability, but conventional farms produced higher yields. Compared to conventional farms, organic farms had lower variability in abundance and richness but greater yield variability. Organic farms thus provided a “win-win” (high means and low variability) for environmental sustainability, while conventional farms provided a “win-win” for production by promoting high crop yields with low variability. Despite lower yields, and greater yield variability, organic systems had similar costs to conventional systems and were more profitable due to organic premiums. Our results suggest certification guidelines for organic farms successfully promote reliable environmental benefits, but greater reliance on ecological processes may reduce predictability of crop production
Hypoxia, not pulmonary vascular pressure induces blood flow through intrapulmonary arteriovenous anastomoses
Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased with exposure to acute hypoxia and has been associated with pulmonary artery systolic pressure (PASP). We aimed to determine the direct relationship between blood flow through IPAVA and PASP in 10 participants with no detectable intracardiac shunt by comparing: (1) isocapnic hypoxia (control); (2) isocapnic hypoxia with oral administration of acetazolamide (AZ; 250 mg, three times-a-day for 48 h) to prevent increases in PASP, and (3) isocapnic hypoxia with AZ and 8.4% NaHCO3 infusion (AZ+HCO3-) to control for AZ-induced acidosis. Isocapnic hypoxia (20 min) was maintained by end-tidal forcing, blood flow through IPAVA was determined by agitated saline contrast echocardiography and PASP was estimated by Doppler ultrasound. Arterial blood samples were collected at rest before each isocapnic-hypoxia condition to determine pH, [HCO3-], and PaCO2. AZ decreased pH (-0.08 ± 0.01), [HCO3-] (-7.1 ± 0.7 mmol/l), and PaCO2 (-4.5 ± 1.4 mmHg; p<0.01), while intravenous NaHCO3 restored arterial blood gas parameters to control levels. Although PASP increased from baseline in all three hypoxic conditions (p<0.05), a main effect of condition expressed an 11 ± 2% reduction in PASP from control (p<0.001) following AZ administration while intravenous NaHCO3 partially restored the PASP response to isocapnic hypoxia. Blood flow through IPAVA increased during exposure to isocapnic hypoxia (p<0.01) and was unrelated to PASP, cardiac output and pulmonary vascular resistance for all conditions. In conclusion, isocapnic hypoxia induces blood flow through IPAVA independent of changes in PASP and the influence of AZ on the PASP response to isocapnic hypoxia is dependent upon the H+ concentration or PaCO2.
Abbreviations list: AZ, acetazolamide; FEV1, forced expiratory volume in 1 second; FIO2, fraction of inspired oxygen; FVC, forced vital capacity; Hb, total haemoglobin; HPV, hypoxic pulmonary vasoconstriction; HR, heart rate; IPAVA, intrapulmonary arteriovenous anastomoses; MAP, mean arterial pressure; PASP, pulmonary artery systolic pressure; PETCO2, end-tidal partial pressure of carbon dioxide; PETO2, end-tidal partial pressure of oxygen; PFO, patent foramen ovale; PVR, pulmonary vascular resistance; Q̇c, cardiac output; RVOT, right ventricular outflow tract; SpO2, oxyhaemoglobin saturation; SV, stroke volume; TRV, tricuspid regurgitant velocity; V̇E, minute ventilation; VTI, velocity-time integra
Reprogramming human T cell function and specificity with non-viral genome targeting.
Decades of work have aimed to genetically reprogram T cells for therapeutic purposes1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites3,4. The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair5,6. Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells
Pharmacokinetics and pharmacodynamics of fenoldopam mesylate for blood pressure control in pediatric patients
<p>Abstract</p> <p>Background</p> <p>Fenoldopam mesylate, a selective dopamine1-receptor agonist, is used by intravenous infusion to treat hypertension in adults. Fenoldopam is not approved by the FDA for use in children; reports describing its use in pediatrics are limited. In a multi-institutional, placebo controlled, double-blind, multi-dose trial we determined the pharmacokinetic (PK) and pharmacodynamic (PD) characteristics and side-effect profile of fenoldopam in children.</p> <p>Methods</p> <p>Seventy seven (77) children from 3 weeks to 12 years of age scheduled for surgery in which deliberate hypotension would be induced were enrolled. Patients were randomly assigned to one of five, blinded treatment groups (placebo or fenoldopam 0.05, 0.2, 0.8, or 3.2 mcg/kg/min iv) for a 30-minute interval after stabilization of anesthesia and placement of vascular catheters. Following the 30-minute blinded interval, investigators adjusted the fenoldopam dose to achieve a target mean arterial pressure in the open-label period until deliberate hypotension was no longer indicated (e.g., muscle-layer closure). Mean arterial pressure and heart rate were continuously monitored and were the primary endpoints.</p> <p>Results</p> <p>Seventy-six children completed the trial. Fenoldopam at doses of 0.8 and 3.2 mcg/kg/min significantly reduced blood pressure (p < 0.05) during the blinded interval, and doses of 1.0–1.2 mcg/kg/min resulted in continued control of blood pressure during the open-label interval. Doses greater than 1.2 mcg/kg/min during the open-label period resulted in increasing heart rate without additional reduction in blood pressure. Fenoldopam was well-tolerated; side effects occurred in a minority of patients. The PK/PD relationship of fenoldopam in children was determined.</p> <p>Conclusion</p> <p>Fenoldopam is a rapid-acting, effective agent for intravenous control of blood pressure in children. The effective dose range is significantly higher in children undergoing anesthesia and surgery (0.8–1.2 mcg/kg/min) than as labeled for adults (0.05–0.3 mcg/kg/min). The PK and side-effect profiles for children and adults are similar.</p
- …